-
Notifications
You must be signed in to change notification settings - Fork 44
/
main.py
218 lines (163 loc) · 9.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#! /usr/bin/python
# -*- coding: utf8 -*-
import os, time, random
import numpy as np
import scipy
import tensorflow as tf
import tensorlayer as tl
from model import *
from utils import *
from config import *
###====================== HYPER-PARAMETERS ===========================###
batch_size = config.train.batch_size
patch_size = config.train.in_patch_size
ni = int(np.sqrt(config.train.batch_size))
def compute_charbonnier_loss(tensor1, tensor2, is_mean=True):
epsilon = 1e-6
if is_mean:
loss = tf.reduce_mean(tf.reduce_mean(tf.sqrt(tf.square(tf.subtract(tensor1,tensor2))+epsilon), [1, 2, 3]))
else:
loss = tf.reduce_mean(tf.reduce_sum(tf.sqrt(tf.square(tf.subtract(tensor1,tensor2))+epsilon), [1, 2, 3]))
return loss
def load_file_list():
train_hr_file_list = []
train_lr_file_list = []
valid_hr_file_list = []
valid_lr_file_list = []
directory = config.train.hr_folder_path
for filename in [y for y in os.listdir(directory) if os.path.isfile(os.path.join(directory,y))]:
train_hr_file_list.append("%s%s"%(directory,filename))
directory = config.train.lr_folder_path
for filename in [y for y in os.listdir(directory) if os.path.isfile(os.path.join(directory,y))]:
train_lr_file_list.append("%s%s"%(directory,filename))
directory = config.valid.hr_folder_path
for filename in [y for y in os.listdir(directory) if os.path.isfile(os.path.join(directory,y))]:
valid_hr_file_list.append("%s%s"%(directory,filename))
directory = config.valid.lr_folder_path
for filename in [y for y in os.listdir(directory) if os.path.isfile(os.path.join(directory,y))]:
valid_lr_file_list.append("%s%s"%(directory,filename))
return sorted(train_hr_file_list),sorted(train_lr_file_list),sorted(valid_hr_file_list),sorted(valid_lr_file_list)
def prepare_nn_data(hr_img_list, lr_img_list, idx_img=None):
i = np.random.randint(len(hr_img_list)) if (idx_img is None) else idx_img
input_image = get_imgs_fn(lr_img_list[i])
output_image = get_imgs_fn(hr_img_list[i])
scale = int(output_image.shape[0] / input_image.shape[0])
assert scale == config.model.scale
out_patch_size = patch_size * scale
input_batch = np.empty([batch_size,patch_size,patch_size,3])
output_batch = np.empty([batch_size,out_patch_size,out_patch_size,3])
for idx in range(batch_size):
in_row_ind = random.randint(0,input_image.shape[0]-patch_size)
in_col_ind = random.randint(0,input_image.shape[1]-patch_size)
input_cropped = augment_imgs_fn(input_image[in_row_ind:in_row_ind+patch_size,
in_col_ind:in_col_ind+patch_size])
input_cropped = normalize_imgs_fn(input_cropped)
input_cropped = np.expand_dims(input_cropped,axis=0)
input_batch[idx] = input_cropped
out_row_ind = in_row_ind * scale
out_col_ind = in_col_ind * scale
output_cropped = output_image[out_row_ind:out_row_ind+out_patch_size,
out_col_ind:out_col_ind+out_patch_size]
output_cropped = normalize_imgs_fn(output_cropped)
output_cropped = np.expand_dims(output_cropped,axis=0)
output_batch[idx] = output_cropped
return input_batch,output_batch
def train():
save_dir = "%s/%s_train"%(config.model.result_path,tl.global_flag['mode'])
checkpoint_dir = "%s"%(config.model.checkpoint_path)
tl.files.exists_or_mkdir(save_dir)
tl.files.exists_or_mkdir(checkpoint_dir)
###========================== DEFINE MODEL ============================###
t_image = tf.placeholder('float32', [batch_size, patch_size, patch_size, 3], name='t_image_input')
t_target_image = tf.placeholder('float32', [batch_size, patch_size*config.model.scale, patch_size*config.model.scale, 3], name='t_target_image')
t_target_image_down = tf.image.resize_images(t_target_image, size=[patch_size*2, patch_size*2], method=0, align_corners=False)
net_image2, net_grad2, net_image1, net_grad1 = LapSRN(t_image, is_train=True, reuse=False)
net_image2.print_params(False)
## test inference
net_image_test, net_grad_test, _, _ = LapSRN(t_image, is_train=False, reuse=True)
###========================== DEFINE TRAIN OPS ==========================###
loss2 = compute_charbonnier_loss(net_image2.outputs, t_target_image, is_mean=True)
loss1 = compute_charbonnier_loss(net_image1.outputs, t_target_image_down, is_mean=True)
g_loss = loss1 + loss2 * 4
g_vars = tl.layers.get_variables_with_name('LapSRN', True, True)
with tf.variable_scope('learning_rate'):
lr_v = tf.Variable(config.train.lr_init, trainable=False)
g_optim = tf.train.AdamOptimizer(lr_v, beta1=config.train.beta1).minimize(g_loss, var_list=g_vars)
###========================== RESTORE MODEL =============================###
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False))
tl.layers.initialize_global_variables(sess)
tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir+'/params_{}.npz'.format(tl.global_flag['mode']), network=net_image2)
###========================== PRE-LOAD DATA ===========================###
train_hr_list,train_lr_list,valid_hr_list,valid_lr_list = load_file_list()
###========================== INTERMEDIATE RESULT ===============================###
sample_ind = 37
sample_input_imgs,sample_output_imgs = prepare_nn_data(valid_hr_list,valid_lr_list,sample_ind)
tl.vis.save_images(truncate_imgs_fn(sample_input_imgs), [ni, ni], save_dir+'/train_sample_input.png')
tl.vis.save_images(truncate_imgs_fn(sample_output_imgs), [ni, ni], save_dir+'/train_sample_output.png')
###========================== TRAINING ====================###
sess.run(tf.assign(lr_v, config.train.lr_init))
print(" ** learning rate: %f" % config.train.lr_init)
for epoch in range(config.train.n_epoch):
## update learning rate
if epoch != 0 and (epoch % config.train.decay_iter == 0):
lr_decay = config.train.lr_decay ** (epoch // config.train.decay_iter)
lr = config.train.lr_init * lr_decay
sess.run(tf.assign(lr_v, lr))
print(" ** learning rate: %f" % (lr))
epoch_time = time.time()
total_g_loss, n_iter = 0, 0
## load image data
idx_list = np.random.permutation(len(train_hr_list))
for idx_file in range(len(idx_list)):
step_time = time.time()
batch_input_imgs,batch_output_imgs = prepare_nn_data(train_hr_list,train_lr_list,idx_file)
errM, _ = sess.run([g_loss, g_optim], {t_image: batch_input_imgs, t_target_image: batch_output_imgs})
total_g_loss += errM
n_iter += 1
print("[*] Epoch: [%2d/%2d] time: %4.4fs, loss: %.8f" % (epoch, config.train.n_epoch, time.time() - epoch_time, total_g_loss/n_iter))
## save model and evaluation on sample set
if (epoch >= 0):
tl.files.save_npz(net_image2.all_params, name=checkpoint_dir+'/params_{}.npz'.format(tl.global_flag['mode']), sess=sess)
if config.train.dump_intermediate_result is True:
sample_out, sample_grad_out = sess.run([net_image_test.outputs,net_grad_test.outputs], {t_image: sample_input_imgs})#; print('gen sub-image:', out.shape, out.min(), out.max())
tl.vis.save_images(truncate_imgs_fn(sample_out), [ni, ni], save_dir+'/train_predict_%d.png' % epoch)
tl.vis.save_images(truncate_imgs_fn(np.abs(sample_grad_out)), [ni, ni], save_dir+'/train_grad_predict_%d.png' % epoch)
def test(file):
try:
img = get_imgs_fn(file)
except IOError:
print('cannot open %s'%(file))
else:
checkpoint_dir = config.model.checkpoint_path
save_dir = "%s/%s"%(config.model.result_path,tl.global_flag['mode'])
input_image = normalize_imgs_fn(img)
size = input_image.shape
print('Input size: %s,%s,%s'%(size[0],size[1],size[2]))
t_image = tf.placeholder('float32', [None,size[0],size[1],size[2]], name='input_image')
net_g, _, _, _ = LapSRN(t_image, is_train=False, reuse=False)
###========================== RESTORE G =============================###
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False))
tl.layers.initialize_global_variables(sess)
tl.files.load_and_assign_npz(sess=sess, name=checkpoint_dir+'/params_train.npz', network=net_g)
###======================= TEST =============================###
start_time = time.time()
out = sess.run(net_g.outputs, {t_image: [input_image]})
print("took: %4.4fs" % (time.time() - start_time))
tl.files.exists_or_mkdir(save_dir)
tl.vis.save_image(truncate_imgs_fn(out[0,:,:,:]), save_dir+'/test_out.png')
tl.vis.save_image(input_image, save_dir+'/test_input.png')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--mode', choices=['train','test'], default='train', help='select mode')
parser.add_argument('-f','--file', help='input file')
args = parser.parse_args()
tl.global_flag['mode'] = args.mode
if tl.global_flag['mode'] == 'train':
train()
elif tl.global_flag['mode'] == 'test':
if (args.file is None):
raise Exception("Please enter input file name for test mode")
test(args.file)
else:
raise Exception("Unknow --mode")