forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
solov2_loss.py
101 lines (89 loc) · 3.86 KB
/
solov2_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
__all__ = ['SOLOv2Loss']
@register
@serializable
class SOLOv2Loss(object):
"""
SOLOv2Loss
Args:
ins_loss_weight (float): Weight of instance loss.
focal_loss_gamma (float): Gamma parameter for focal loss.
focal_loss_alpha (float): Alpha parameter for focal loss.
"""
def __init__(self,
ins_loss_weight=3.0,
focal_loss_gamma=2.0,
focal_loss_alpha=0.25):
self.ins_loss_weight = ins_loss_weight
self.focal_loss_gamma = focal_loss_gamma
self.focal_loss_alpha = focal_loss_alpha
def _dice_loss(self, input, target):
input = paddle.reshape(input, shape=(paddle.shape(input)[0], -1))
target = paddle.reshape(target, shape=(paddle.shape(target)[0], -1))
a = paddle.sum(input * target, axis=1)
b = paddle.sum(input * input, axis=1) + 0.001
c = paddle.sum(target * target, axis=1) + 0.001
d = (2 * a) / (b + c)
return 1 - d
def __call__(self, ins_pred_list, ins_label_list, cate_preds, cate_labels,
num_ins):
"""
Get loss of network of SOLOv2.
Args:
ins_pred_list (list): Variable list of instance branch output.
ins_label_list (list): List of instance labels pre batch.
cate_preds (list): Concat Variable list of categroy branch output.
cate_labels (list): Concat list of categroy labels pre batch.
num_ins (int): Number of positive samples in a mini-batch.
Returns:
loss_ins (Variable): The instance loss Variable of SOLOv2 network.
loss_cate (Variable): The category loss Variable of SOLOv2 network.
"""
#1. Ues dice_loss to calculate instance loss
loss_ins = []
total_weights = paddle.zeros(shape=[1], dtype='float32')
for input, target in zip(ins_pred_list, ins_label_list):
if input is None:
continue
target = paddle.cast(target, 'float32')
target = paddle.reshape(
target,
shape=[-1, paddle.shape(input)[-2], paddle.shape(input)[-1]])
weights = paddle.cast(
paddle.sum(target, axis=[1, 2]) > 0, 'float32')
input = F.sigmoid(input)
dice_out = paddle.multiply(self._dice_loss(input, target), weights)
total_weights += paddle.sum(weights)
loss_ins.append(dice_out)
loss_ins = paddle.sum(paddle.concat(loss_ins)) / total_weights
loss_ins = loss_ins * self.ins_loss_weight
#2. Ues sigmoid_focal_loss to calculate category loss
# expand onehot labels
num_classes = cate_preds.shape[-1]
cate_labels_bin = F.one_hot(cate_labels, num_classes=num_classes + 1)
cate_labels_bin = cate_labels_bin[:, 1:]
loss_cate = F.sigmoid_focal_loss(
cate_preds,
label=cate_labels_bin,
normalizer=num_ins + 1.,
gamma=self.focal_loss_gamma,
alpha=self.focal_loss_alpha)
return loss_ins, loss_cate