A machine learning based prediction model that is used to predict the price of used cars based on data given by user.
- Anaconda - (Jupyter Notebook,Scikit,Pandas,Python3,Numpy)
- LightGBM
- Flask
- requests
- jsonify
- Pickle
- HTML5-CSS
- 0 - CNG
- 1 - Diesel
- 2 - Petrol
- 3 - LPG
- 4 - Electric
- 0 - Ambassador
- 1 - Audi
- 2 - BMW
- 3 - Bentley
- 4 - Chevrolet
- 5 - Datsun
- 6 - Fiat
- 7 - Force
- 8 - Ford
- 9 - Hindustan
- 10 - Honda
- 11 - Hyundai
- 12 - ISUZU
- 13 - Jaguar
- 14 - Jeep
- 15 - Lamborgini
- 16 - LandRover
- 17 - Mahindra
- 18 - Maruti
- 19 - Mercedes-Benz
- 20 - MiniCooper
- 21 - Mitsubishi
- 22 - Nissan
- 23 - OpelCorsa
- 24 - Porshe
- 25 - Renault
- 26 - Skoda
- 27 - Smart
- 28 - Tata
- 29 - Toyota
- 30 - Volkswagen
- 31 - Volvo
- 0 - Mumbai
- 1 - Pune
- 2 - Chennai
- 3 - Coimbatore
- 4 - Hyderabad
- 5 - Jaipur
- 6 - Kochi
- 7 - Kolkata
- 8 - Delhi
- 9 - Bangalore
- 10 -Ahmedabad
- 0 - Manual
- 1 - Automatic
- 0 - First
- 1 - Second
- 2 - Fourth & Above
- 3 - Third
- Download & Install Anaconda
- Use Jupyter Notebook to run the file
- OR
- Use Google Colab to run .ipynb files in the cloud.
- Open cmd
- Change directory to the place where the code is saved
- run "python app.py" to deploy locally.
- If changes in dataset is made, model might give out undesirable outputs.
- Install all python modules mentioned above before running the project.
- Output.xlsx gives output after prediction based on test data.
- While using the website, try to avoid giving vague inputs as it provides wrong results.