Skip to content

Code to use to prepare input data for RAPID from ECMWF forecast on Linux (created in Ubuntu) using Multiprocessing.

License

Notifications You must be signed in to change notification settings

CI-WATER/erfp_data_process_ubuntu

Repository files navigation

erfp_data_process_ubuntu

Code to use to prepare input data for RAPID from ECMWF forecast on Linux (created in Ubuntu) using Multiprocessing. ##Step 1: Install RAPID For Ubuntu:

$ apt-get install gfortran g++

Follow the instructions on page 10-14: http://rapid-hub.org/docs/RAPID_Azure.pdf.

Add run_rapid.sh to the rapid/run directory with the lines:

cd /home/alan/work/rapid/run/
./rapid

##Step 2: Install netCDF4-python ###Install on Ubuntu:

$ apt-get install python-dev zlib1g-dev libhdf5-serial-dev libnetcdf-dev 
$ pip install numpy
$ pip install netCDF4

###Install on Redhat: Note: this tool was desgined and tested in Ubuntu

$ yum install netcdf4-python
$ yum install hdf5-devel
$ yum install netcdf-devel
$ pip install numpy
$ pip install netCDF4

##Step 3: Install tethys_dataset_services

$ pip install requests_toolbelt
$ pip install tethys_dataset_services

##Step 4: Download the source code

$ cd /path/to/your/scripts/
$ git clone https://github.com/CI-WATER/erfp_data_process_ubuntu.git
$ git submodule init
$ git submodule update

##Step 5: Create folders for RAPID input and for downloading ECMWF In this instance:

$ cd /home/alan/
$ mkdir work/rapid/input work/ecmwf work/logs

##Step 6: Change the locations in the files Go into rapid_process_async_ubuntu.py and change these variables for your instance:

    rapid_files_location = '/home/alan/work/rapid'
    ecmwf_forecast_location = "/home/alan/work/ecmwf"
    ckan_api_endpoint = 'http://ciwckan.chpc.utah.edu'
    ckan_api_key = 'areally-good-key'

Go into rapid_process.sh and change make sure the path locations and variables are correct for your instance. ##Step 7: Make sure permissions are correct for these files and any directories the script will use

Example:

$ chmod 554 rapid_process_async_ubuntu.py
$ chmod 554 rapid_process.sh

##Step 8: Add RAPID files to the work/rapid/input directory Example:

$ ls work/rapid/input
huc_region_1209
$ ls -lh work/rapid/input/huc_region_1209
-r--r--r-- 1 alan alan 163K Mar  6 10:01 k.csv
-r--r--r-- 1 alan alan 163K Mar  6 10:01 kfac.csv
-r--r--r-- 1 alan alan 340K Mar  6 19:22 rapid_connect.csv
-rw-r--r-- 1 alan alan 5.1K Mar 25 04:15 rapid_namelist_huc_4_1209.dat
-r--r--r-- 1 alan alan  99K Mar  9 07:52 riv_bas_id_huc_4_1209.csv
-r--r--r-- 1 alan alan 1.5M Mar  9 08:03 weight_high_res.csv
-r--r--r-- 1 alan alan 1.2M Mar  9 08:03 weight_low_res.csv
-r--r--r-- 1 alan alan  55K Mar  6 10:01 x.csv

##Step 9: Create CRON job to run the scripts twice daily See: http://askubuntu.com/questions/2368/how-do-i-set-up-a-cron-job

You only need to run rapid_process.sh

$ ./rapid_process.sh

#Troubleshooting If you see this error: ImportError: No module named packages.urllib3.poolmanager

$ pip install pip --upgrade

Restart your terminal

$ pip install requests --upgrade

About

Code to use to prepare input data for RAPID from ECMWF forecast on Linux (created in Ubuntu) using Multiprocessing.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published