Skip to content

Paper notes for my PhD on Machine Learning (mostly focused on Reinforcement Learning)

Notifications You must be signed in to change notification settings

Caselles/paper_notes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 

Repository files navigation

Summaries of Machine Learning (mostly Reinforcement Learning) papers

Inspired by Adrian Colyer, Denny Britz and Daniel Seita

This contains my notes for research papers that are relevant for my PhD on Machine Learning. First, I list papers that I've read and papers that I want to read. Then, read papers are numbered on a (1) to (5) scale where a (1) means I have only barely skimmed it, while a (5) means I feel confident that I understand almost everything about the paper. The links here go to my paper summaries if I have them, otherwise those papers are on my TODO list.

Contents:

Machine Learning papers

Papers I've read

Special: Notes and thoughts about VAEs and how to make them work! Based on the following papers:

Papers I want to read

  • FeUdal Networks for Hierarchical Reinforcement Learning
  • Diversity is All You Need: Learning Skills without a Reward Function
  • Learning to Search Better than Your Teacher
  • Transfer in Variable-Reward Hierarchical Reinforcement Learning
  • Curriculum Learning
  • Theoretical TL papers from TL survey

Questions for which I need the answer

I need the answers to these questions. Any help is welcome ! Reach me at [email protected]

About

Paper notes for my PhD on Machine Learning (mostly focused on Reinforcement Learning)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published