-
Notifications
You must be signed in to change notification settings - Fork 369
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add BN254 pairing using field emulation
- Loading branch information
Showing
6 changed files
with
1,321 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,16 @@ | ||
package pairing_bn254 | ||
|
||
import ( | ||
"github.com/consensys/gnark-crypto/ecc/bn254" | ||
"github.com/consensys/gnark/std/algebra/weierstrass" | ||
"github.com/consensys/gnark/std/math/emulated" | ||
) | ||
|
||
type G1Affine = weierstrass.AffinePoint[emulated.BN254Fp] | ||
|
||
func NewG1Affine(v bn254.G1Affine) G1Affine { | ||
return G1Affine{ | ||
X: emulated.NewElement[emulated.BN254Fp](v.X), | ||
Y: emulated.NewElement[emulated.BN254Fp](v.Y), | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
package pairing_bn254 | ||
|
||
import ( | ||
"github.com/consensys/gnark-crypto/ecc/bn254" | ||
"github.com/consensys/gnark/std/math/emulated" | ||
) | ||
|
||
type G2Affine struct { | ||
X, Y E2 | ||
} | ||
|
||
type G2Jacobian struct { | ||
X, Y, Z E2 | ||
} | ||
|
||
type G2Projective struct { | ||
X, Y, Z E2 | ||
} | ||
|
||
func NewG2Affine(v bn254.G2Affine) G2Affine { | ||
return G2Affine{ | ||
X: E2{ | ||
A0: emulated.NewElement[emulated.BN254Fp](v.X.A0), | ||
A1: emulated.NewElement[emulated.BN254Fp](v.X.A1), | ||
}, | ||
Y: E2{ | ||
A0: emulated.NewElement[emulated.BN254Fp](v.Y.A0), | ||
A1: emulated.NewElement[emulated.BN254Fp](v.Y.A1), | ||
}, | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
package pairing_bn254 | ||
|
||
import ( | ||
"github.com/consensys/gnark-crypto/ecc/bn254" | ||
"github.com/consensys/gnark/std/math/emulated" | ||
) | ||
|
||
type GTEl = E12 | ||
|
||
func NewGTEl(v bn254.GT) GTEl { | ||
return GTEl{ | ||
C0: E6{ | ||
B0: E2{ | ||
A0: emulated.NewElement[emulated.BN254Fp](v.C0.B0.A0), | ||
A1: emulated.NewElement[emulated.BN254Fp](v.C0.B0.A1), | ||
}, | ||
B1: E2{ | ||
A0: emulated.NewElement[emulated.BN254Fp](v.C0.B1.A0), | ||
A1: emulated.NewElement[emulated.BN254Fp](v.C0.B1.A1), | ||
}, | ||
B2: E2{ | ||
A0: emulated.NewElement[emulated.BN254Fp](v.C0.B2.A0), | ||
A1: emulated.NewElement[emulated.BN254Fp](v.C0.B2.A1), | ||
}, | ||
}, | ||
C1: E6{ | ||
B0: E2{ | ||
A0: emulated.NewElement[emulated.BN254Fp](v.C1.B0.A0), | ||
A1: emulated.NewElement[emulated.BN254Fp](v.C1.B0.A1), | ||
}, | ||
B1: E2{ | ||
A0: emulated.NewElement[emulated.BN254Fp](v.C1.B1.A0), | ||
A1: emulated.NewElement[emulated.BN254Fp](v.C1.B1.A1), | ||
}, | ||
B2: E2{ | ||
A0: emulated.NewElement[emulated.BN254Fp](v.C1.B2.A0), | ||
A1: emulated.NewElement[emulated.BN254Fp](v.C1.B2.A1), | ||
}, | ||
}, | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,278 @@ | ||
package pairing_bn254 | ||
|
||
import ( | ||
"fmt" | ||
|
||
"github.com/consensys/gnark/frontend" | ||
"github.com/consensys/gnark/std/math/emulated" | ||
) | ||
|
||
type Pairing struct { | ||
*ext12 | ||
} | ||
|
||
func NewPairing(api frontend.API) (*Pairing, error) { | ||
ba, err := emulated.NewField[emulated.BN254Fp](api) | ||
if err != nil { | ||
return nil, fmt.Errorf("new base api: %w", err) | ||
} | ||
return &Pairing{ | ||
ext12: NewExt12(ba), | ||
}, nil | ||
} | ||
|
||
func (pr Pairing) DoubleStep(p *G2Projective) (*G2Projective, *LineEvaluation) { | ||
// var t1, A, B, C, D, E, EE, F, G, H, I, J, K fptower.E2 | ||
A := pr.ext2.Mul(&p.X, &p.Y) // A.Mul(&p.x, &p.y) | ||
A = pr.ext2.Halve(A) // A.Halve() | ||
B := pr.ext2.Square(&p.Y) // B.Square(&p.y) | ||
C := pr.ext2.Square(&p.Z) // C.Square(&p.z) | ||
D := pr.ext2.Double(C) // D.Double(&C). | ||
D = pr.ext2.Add(D, C) // Add(&D, &C) | ||
E := pr.ext2.MulBybTwistCurveCoeff(D) // E.MulBybTwistCurveCoeff(&D) | ||
F := pr.ext2.Double(E) // F.Double(&E). | ||
F = pr.ext2.Add(F, E) // Add(&F, &E) | ||
G := pr.ext2.Add(B, F) // G.Add(&B, &F) | ||
G = pr.ext2.Halve(G) // G.Halve() | ||
H := pr.ext2.Add(&p.Y, &p.Z) // H.Add(&p.y, &p.z). | ||
H = pr.ext2.Square(H) // Square(&H) | ||
t1 := pr.ext2.Add(B, C) // t1.Add(&B, &C) | ||
H = pr.ext2.Sub(H, t1) // H.Sub(&H, &t1) | ||
I := pr.ext2.Sub(E, B) // I.Sub(&E, &B) | ||
J := pr.ext2.Square(&p.X) // J.Square(&p.x) | ||
EE := pr.ext2.Square(E) // EE.Square(&E) | ||
K := pr.ext2.Double(EE) // K.Double(&EE). | ||
K = pr.ext2.Add(K, EE) // Add(&K, &EE) | ||
px := pr.ext2.Sub(B, F) // p.x.Sub(&B, &F). | ||
px = pr.ext2.Mul(px, A) // Mul(&p.x, &A) | ||
py := pr.ext2.Square(G) // p.y.Square(&G). | ||
py = pr.ext2.Sub(py, K) // Sub(&p.y, &K) | ||
pz := pr.ext2.Mul(B, H) // p.z.Mul(&B, &H) | ||
ev0 := pr.ext2.Neg(H) // evaluations.r0.Neg(&H) | ||
ev1 := pr.ext2.Double(J) // evaluations.r1.Double(&J). | ||
ev1 = pr.ext2.Add(ev1, J) // Add(&evaluations.r1, &J) | ||
ev2 := I // evaluations.r2.Set(&I) | ||
return &G2Projective{ | ||
X: *px, | ||
Y: *py, | ||
Z: *pz, | ||
}, | ||
&LineEvaluation{ | ||
r0: *ev0, | ||
r1: *ev1, | ||
r2: *ev2, | ||
} | ||
} | ||
|
||
func (pr Pairing) AffineToProjective(Q *G2Affine) *G2Projective { | ||
// TODO: check point at infinity? We do not filter them in the Miller Loop neither. | ||
// if Q.X.IsZero() && Q.Y.IsZero() { | ||
// p.z.SetZero() | ||
// p.x.SetOne() | ||
// p.y.SetOne() | ||
// return p | ||
// } | ||
pz := pr.ext2.One() // p.z.SetOne() | ||
px := &Q.X // p.x.Set(&Q.X) | ||
py := &Q.Y // p.y.Set(&Q.Y) | ||
return &G2Projective{ // return p | ||
X: *px, | ||
Y: *py, | ||
Z: *pz, | ||
} | ||
} | ||
|
||
func (pr Pairing) NegAffine(a *G2Affine) *G2Affine { | ||
px := &a.X // p.X = a.X | ||
py := pr.ext2.Neg(&a.Y) // p.Y.Neg(&a.Y) | ||
return &G2Affine{ // return p | ||
X: *px, | ||
Y: *py, | ||
} | ||
} | ||
|
||
func (pr Pairing) AddStep(p *G2Projective, a *G2Affine) (*G2Projective, *LineEvaluation) { | ||
// var Y2Z1, X2Z1, O, L, C, D, E, F, G, H, t0, t1, t2, J fptower.E2 | ||
Y2Z1 := pr.ext2.Mul(&a.Y, &p.Z) // Y2Z1.Mul(&a.Y, &p.z) | ||
O := pr.ext2.Sub(&p.Y, Y2Z1) // O.Sub(&p.y, &Y2Z1) | ||
X2Z1 := pr.ext2.Mul(&a.X, &p.Z) // X2Z1.Mul(&a.X, &p.z) | ||
L := pr.ext2.Sub(&p.X, X2Z1) // L.Sub(&p.x, &X2Z1) | ||
C := pr.ext2.Square(O) // C.Square(&O) | ||
D := pr.ext2.Square(L) // D.Square(&L) | ||
E := pr.ext2.Mul(L, D) // E.Mul(&L, &D) | ||
F := pr.ext2.Mul(&p.Z, C) // F.Mul(&p.z, &C) | ||
G := pr.ext2.Mul(&p.X, D) // G.Mul(&p.x, &D) | ||
t0 := pr.ext2.Double(G) // t0.Double(&G) | ||
H := pr.ext2.Add(E, F) // H.Add(&E, &F). | ||
H = pr.ext2.Sub(H, t0) // Sub(&H, &t0) | ||
t1 := pr.ext2.Mul(&p.Y, E) // t1.Mul(&p.y, &E) | ||
px := pr.ext2.Mul(L, H) // p.x.Mul(&L, &H) | ||
py := pr.ext2.Sub(G, H) // p.y.Sub(&G, &H). | ||
py = pr.ext2.Mul(py, O) // Mul(&p.y, &O). | ||
py = pr.ext2.Sub(py, t1) // Sub(&p.y, &t1) | ||
pz := pr.ext2.Mul(E, &p.Z) // p.z.Mul(&E, &p.z) | ||
t2 := pr.ext2.Mul(L, &a.Y) // t2.Mul(&L, &a.Y) | ||
J := pr.ext2.Mul(&a.X, O) // J.Mul(&a.X, &O). | ||
J = pr.ext2.Sub(J, t2) // Sub(&J, &t2) | ||
ev0 := L // evaluations.r0.Set(&L) | ||
ev1 := pr.ext2.Neg(O) // evaluations.r1.Neg(&O) | ||
ev2 := J // evaluations.r2.Set(&J) | ||
return &G2Projective{ | ||
X: *px, | ||
Y: *py, | ||
Z: *pz, | ||
}, &LineEvaluation{ | ||
r0: *ev0, | ||
r1: *ev1, | ||
r2: *ev2, | ||
} | ||
} | ||
|
||
type LineEvaluation struct { | ||
r0 E2 | ||
r1 E2 | ||
r2 E2 | ||
} | ||
|
||
var loopCounter = [66]int8{ | ||
0, 0, 0, 1, 0, 1, 0, -1, 0, 0, -1, | ||
0, 0, 0, 1, 0, 0, -1, 0, -1, 0, 0, | ||
0, 1, 0, -1, 0, 0, 0, 0, -1, 0, 0, | ||
1, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, | ||
-1, 0, 0, -1, 0, 1, 0, -1, 0, 0, 0, | ||
-1, 0, -1, 0, 0, 0, 1, 0, -1, 0, 1, | ||
} | ||
|
||
func (pr Pairing) MillerLoop(p []*G1Affine, q []*G2Affine) (*GTEl, error) { | ||
n := len(p) | ||
if n == 0 || n != len(q) { | ||
return nil, fmt.Errorf("invalid inputs sizes") | ||
} | ||
|
||
// TODO: we have omitted filtering for infinity points. | ||
|
||
// projective points for Q | ||
qProj := make([]*G2Projective, n) // qProj := make([]g2Proj, n) | ||
qNeg := make([]*G2Affine, n) // qNeg := make([]G2Affine, n) | ||
for k := 0; k < n; k++ { | ||
qProj[k] = pr.AffineToProjective(q[k]) // qProj[k].FromAffine(&q[k]) | ||
qNeg[k] = pr.NegAffine(q[k]) // qNeg[k].Neg(&q[k]) | ||
} | ||
|
||
var l, l0 *LineEvaluation | ||
result := pr.ext12.One() // var tmp, result GTEl | ||
|
||
// i == len(loopCounter) - 2 | ||
for k := 0; k < n; k++ { | ||
qProj[k], l = pr.DoubleStep(qProj[k]) // qProj[k].DoubleStep(&l) | ||
l.r0 = *pr.ext12.ext2.MulByElement(&l.r0, &p[k].Y) // l.r0.MulByElement(&l.r0, &p[k].Y) | ||
l.r1 = *pr.ext12.ext2.MulByElement(&l.r1, &p[k].X) // l.r1.MulByElement(&l.r1, &p[k].X) | ||
result = pr.ext12.MulBy034(result, &l.r0, &l.r1, &l.r2) // result.MulBy034(&l.r0, &l.r1, &l.r2) | ||
} | ||
|
||
for i := len(loopCounter) - 3; i >= 0; i-- { | ||
result = pr.ext12.Square(result) // result.Square(&result) | ||
|
||
for k := 0; k < n; k++ { | ||
qProj[k], l = pr.DoubleStep(qProj[k]) // qProj[k].DoubleStep(&l) | ||
l.r0 = *pr.ext12.ext2.MulByElement(&l.r0, &p[k].Y) // l.r0.MulByElement(&l.r0, &p[k].Y) | ||
l.r1 = *pr.ext12.ext2.MulByElement(&l.r1, &p[k].X) // l.r1.MulByElement(&l.r1, &p[k].X) | ||
|
||
if loopCounter[i] == 1 { | ||
qProj[k], l0 = pr.AddStep(qProj[k], q[k]) // qProj[k].AddMixedStep(&l0, &q[k]) | ||
l0.r0 = *pr.ext12.ext2.MulByElement(&l0.r0, &p[k].Y) // l0.r0.MulByElement(&l0.r0, &p[k].Y) | ||
l0.r1 = *pr.ext12.ext2.MulByElement(&l0.r1, &p[k].X) // l0.r1.MulByElement(&l0.r1, &p[k].X) | ||
tmp := pr.ext12.MulBy034by034(&l.r0, &l.r1, &l.r2, &l0.r0, &l0.r1, &l0.r2) // tmp.Mul034by034(&l.r0, &l.r1, &l.r2, &l0.r0, &l0.r1, &l0.r2) | ||
result = pr.ext12.Mul(result, tmp) // result.Mul(&result, &tmp) | ||
} else if loopCounter[i] == -1 { | ||
qProj[k], l0 = pr.AddStep(qProj[k], qNeg[k]) // qProj[k].AddMixedStep(&l0, &qNeg[k]) | ||
l0.r0 = *pr.ext12.ext2.MulByElement(&l0.r0, &p[k].Y) // l0.r0.MulByElement(&l0.r0, &p[k].Y) | ||
l0.r1 = *pr.ext12.ext2.MulByElement(&l0.r1, &p[k].X) // l0.r1.MulByElement(&l0.r1, &p[k].X) | ||
tmp := pr.ext12.MulBy034by034(&l.r0, &l.r1, &l.r2, &l0.r0, &l0.r1, &l0.r2) // tmp.Mul034by034(&l.r0, &l.r1, &l.r2, &l0.r0, &l0.r1, &l0.r2) | ||
result = pr.ext12.Mul(result, tmp) //result.Mul(&result, &tmp) | ||
} else { | ||
result = pr.ext12.MulBy034(result, &l.r0, &l.r1, &l.r2) // result.MulBy034(&l.r0, &l.r1, &l.r2) | ||
} | ||
} | ||
} | ||
|
||
Q1, Q2 := new(G2Affine), new(G2Affine) // var Q1, Q2 G2Affine | ||
for k := 0; k < n; k++ { | ||
//Q1 = π(Q) | ||
// TODO(ivokub): define phi(Q) in G2 instead of doing manually? | ||
Q1.X = *pr.ext12.ext2.Conjugate(&q[k].X) // Q1.X.Conjugate(&q[k].X).MulByNonResidue1Power2(&Q1.X) | ||
Q1.X = *pr.ext12.ext2.MulByNonResidue1Power2(&Q1.X) // Q1.X.Conjugate(&q[k].X).MulByNonResidue1Power2(&Q1.X) | ||
Q1.Y = *pr.ext12.ext2.Conjugate(&q[k].Y) // Q1.Y.Conjugate(&q[k].Y).MulByNonResidue1Power3(&Q1.Y) | ||
Q1.Y = *pr.ext12.ext2.MulByNonResidue1Power3(&Q1.Y) // Q1.Y.Conjugate(&q[k].Y).MulByNonResidue1Power3(&Q1.Y) | ||
|
||
// Q2 = -π²(Q) | ||
Q2.X = *pr.ext12.ext2.MulByNonResidue2Power2(&q[k].X) // Q2.X.MulByNonResidue2Power2(&q[k].X) | ||
Q2.Y = *pr.ext12.ext2.MulByNonResidue2Power3(&q[k].Y) // Q2.Y.MulByNonResidue2Power3(&q[k].Y).Neg(&Q2.Y) | ||
Q2.Y = *pr.ext12.ext2.Neg(&Q2.Y) // Q2.Y.MulByNonResidue2Power3(&q[k].Y).Neg(&Q2.Y) | ||
|
||
qProj[k], l0 = pr.AddStep(qProj[k], Q1) // qProj[k].AddMixedStep(&l0, &Q1) | ||
l0.r0 = *pr.ext12.ext2.MulByElement(&l0.r0, &p[k].Y) // l0.r0.MulByElement(&l0.r0, &p[k].Y) | ||
l0.r1 = *pr.ext12.ext2.MulByElement(&l0.r1, &p[k].X) // l0.r1.MulByElement(&l0.r1, &p[k].X) | ||
|
||
qProj[k], l = pr.AddStep(qProj[k], Q2) // qProj[k].AddMixedStep(&l, &Q2) | ||
l.r0 = *pr.ext12.ext2.MulByElement(&l.r0, &p[k].Y) // l.r0.MulByElement(&l.r0, &p[k].Y) | ||
l.r1 = *pr.ext12.ext2.MulByElement(&l.r1, &p[k].X) // l.r1.MulByElement(&l.r1, &p[k].X) | ||
tmp := pr.ext12.MulBy034by034(&l.r0, &l.r1, &l.r2, &l0.r0, &l0.r1, &l0.r2) // tmp.Mul034by034(&l.r0, &l.r1, &l.r2, &l0.r0, &l0.r1, &l0.r2) | ||
result = pr.ext12.Mul(result, tmp) // result.Mul(&result, &tmp) | ||
} | ||
|
||
return result, nil | ||
} | ||
|
||
func (pr Pairing) FinalExponentiation(e *GTEl) *GTEl { | ||
// var result GT | ||
// result.Set(z) | ||
var t [4]*GTEl // var t [4]GT | ||
|
||
// easy part | ||
t[0] = pr.ext12.Conjugate(e) // t[0].Conjugate(&result) | ||
result := pr.ext12.Inverse(e) // result.Inverse(&result) | ||
t[0] = pr.ext12.Mul(t[0], result) // t[0].Mul(&t[0], &result) | ||
result = pr.ext12.FrobeniusSquare(t[0]) // result.FrobeniusSquare(&t[0]). | ||
result = pr.ext12.Mul(result, t[0]) // Mul(&result, &t[0]) | ||
|
||
//hard part | ||
t[0] = pr.ext12.Expt(result) // t[0].Expt(&result). | ||
t[0] = pr.ext12.Conjugate(t[0]) // Conjugate(&t[0]) | ||
t[0] = pr.ext12.CyclotomicSquare(t[0]) // t[0].CyclotomicSquare(&t[0]) | ||
t[2] = pr.ext12.Expt(t[0]) // t[2].Expt(&t[0]). | ||
t[2] = pr.ext12.Conjugate(t[2]) // Conjugate(&t[2]) | ||
t[1] = pr.ext12.CyclotomicSquare(t[2]) // t[1].CyclotomicSquare(&t[2]) | ||
t[2] = pr.ext12.Mul(t[2], t[1]) // t[2].Mul(&t[2], &t[1]) | ||
t[2] = pr.ext12.Mul(t[2], result) // t[2].Mul(&t[2], &result) | ||
t[1] = pr.ext12.Expt(t[2]) // t[1].Expt(&t[2]). | ||
t[1] = pr.ext12.CyclotomicSquare(t[1]) // CyclotomicSquare(&t[1]). | ||
t[1] = pr.ext12.Mul(t[1], t[2]) // Mul(&t[1], &t[2]). | ||
t[1] = pr.ext12.Conjugate(t[1]) // Conjugate(&t[1]) | ||
t[3] = pr.ext12.Conjugate(t[1]) // t[3].Conjugate(&t[1]) | ||
t[1] = pr.ext12.CyclotomicSquare(t[0]) // t[1].CyclotomicSquare(&t[0]) | ||
t[1] = pr.ext12.Mul(t[1], result) // t[1].Mul(&t[1], &result) | ||
t[1] = pr.ext12.Conjugate(t[1]) // t[1].Conjugate(&t[1]) | ||
t[1] = pr.ext12.Mul(t[1], t[3]) // t[1].Mul(&t[1], &t[3]) | ||
t[0] = pr.ext12.Mul(t[0], t[1]) // t[0].Mul(&t[0], &t[1]) | ||
t[2] = pr.ext12.Mul(t[2], t[1]) // t[2].Mul(&t[2], &t[1]) | ||
t[3] = pr.ext12.FrobeniusSquare(t[1]) // t[3].FrobeniusSquare(&t[1]) | ||
t[2] = pr.ext12.Mul(t[2], t[3]) // t[2].Mul(&t[2], &t[3]) | ||
t[3] = pr.ext12.Conjugate(result) // t[3].Conjugate(&result) | ||
t[3] = pr.ext12.Mul(t[3], t[0]) // t[3].Mul(&t[3], &t[0]) | ||
t[1] = pr.ext12.FrobeniusCube(t[3]) // t[1].FrobeniusCube(&t[3]) | ||
t[2] = pr.ext12.Mul(t[2], t[1]) // t[2].Mul(&t[2], &t[1]) | ||
t[1] = pr.ext12.Frobenius(t[0]) // t[1].Frobenius(&t[0]) | ||
t[1] = pr.ext12.Mul(t[1], t[2]) // t[1].Mul(&t[1], &t[2]) | ||
// result.Set(&t[1]) | ||
return t[1] // return result | ||
} | ||
|
||
func (pr Pairing) Pair(P []*G1Affine, Q []*G2Affine) (*GTEl, error) { | ||
res, err := pr.MillerLoop(P, Q) | ||
if err != nil { | ||
return nil, fmt.Errorf("miller loop: %w", err) | ||
} | ||
res = pr.FinalExponentiation(res) | ||
return res, nil | ||
} |
Oops, something went wrong.