A Python-based salient object detection and video object segmentation evaluation toolbox.
重要提示,最近基于Fan的matlab代码,实现了一份更加快速和准确的指标代码https://github.com/lartpang/PySODMetrics,已经整合到该代码中。
- 提供11项显著性目标检测指标的评估
- F-measure-Threshold Curve
- Precision-Recall Curve
- MAE
- weighted F-measure
- S-measure
- max/mean/adaptive F-measure
- max/mean/adaptive E-measure
- 测试代码高度优化
- 纯python实现,基于numpy和各种小trick计算各项指标,速度有保障
- 导出特定模型的结果到xlsx文件中(2021年01月04日重新提供支持)
- 导出测试结果到txt文件中
- 评估所有指定的方法,根据评估结果绘制PR曲线和F-measure曲线
- 针对DAVIS 2016无监督视频目标分割任务,提供
"J(M)", "J(O)", "J(D)", "F(M)", "F(O)", "F(D)"
等指标的评估(代码借鉴自davis官方的代码,建议使用前验证下)- 导出对指定的模型预测结果的评估结果
- 表格化展示不同视频上模型预测的性能
可见各自文件中的配置项。
python eval_unvos_method.py --help
- 配置相关项后执行代码
由于本工具箱是用来评估指标,所以计算过程的正确性十分重要,但是编写能力有限,可能存在一些小问题,希望大家可以及时指出。
评估代码来自本人的另一个项目:https://github.com/lartpang/PySODMetrics,欢迎捉BUG!
- Python_Openpyxl: https://www.cnblogs.com/programmer-tlh/p/10461353.html
- Python之re模块: https://www.cnblogs.com/shenjianping/p/11647473.html
@inproceedings{Fmeasure,
title={Frequency-tuned salient region detection},
author={Achanta, Radhakrishna and Hemami, Sheila and Estrada, Francisco and S{\"u}sstrunk, Sabine},
booktitle=CVPR,
number={CONF},
pages={1597--1604},
year={2009}
}
@inproceedings{MAE,
title={Saliency filters: Contrast based filtering for salient region detection},
author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander},
booktitle=CVPR,
pages={733--740},
year={2012}
}
@inproceedings{Smeasure,
title={Structure-measure: A new way to eval foreground maps},
author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali},
booktitle=ICCV,
pages={4548--4557},
year={2017}
}
@inproceedings{Emeasure,
title="Enhanced-alignment Measure for Binary Foreground Map Evaluation",
author="Deng-Ping {Fan} and Cheng {Gong} and Yang {Cao} and Bo {Ren} and Ming-Ming {Cheng} and Ali {Borji}",
booktitle=IJCAI,
pages="698--704",
year={2018}
}
@inproceedings{wFmeasure,
title={How to eval foreground maps?},
author={Margolin, Ran and Zelnik-Manor, Lihi and Tal, Ayellet},
booktitle=CVPR,
pages={248--255},
year={2014}
}