This module implemets the AEC method from Brette et al. (2008)
- A RTXI module to inject white noise in the system and obtain the data for the calibration is also included
- The calibration is done in python, with a code also included. This calibration creates a kernel file
- Finally, the AEC module can be used with the calculated electrode kernel
- Install our white noise module:
cd white-noise-module-rtxi && sudo make install
- Insert white noise & read the voltage
- Save the data (recorded voltage & white noise injection)
- Our RTXI workspace is included (white_generator.set)
- Generate the electrode kernel (check line 86 to define the trial of the h5 file):
py aec_train.py -p file.h5 -m intra
- The c++ convolution code used in RTXI can be tested standalone using:
g++ -std=c++1y -O3 -Wall -pedantic -pthread convolution_test.cpp && ./a.out
- The calculated kernel is in:
aec_kernel.txt
- Check line 151 to define your kernel path:
aec-module-rtxi/aec-module-rtxi.cpp
- Install our AEC module:
cd aec-module-rtxi && sudo make install
- Open the AEC module in RTXI
- Connect AEC module inputs (recorded voltage & current injection) and output (clean voltage)
- Our RTXI workspace is included (aec_test.set)
Brette, R., Piwkowska, Z., Monier, C., Rudolph-Lilith, M., Fournier, J., Levy, M., Frégnac, Y., Bal, T., Destexhe, A. (2008). High-resolution intracellular recordings using a real-time computational model of the electrode. Neuron, 59(3), 379-391.