Skip to content

Gabriel2409/mongo-tuto

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 

Repository files navigation

Imports and exports

  • Connect to the cluster: pass the uri connection string : --uri mongodb+srv://user:[email protected]/database
  • mongodump: exports data in BSON format: mongodump --uri mongodb+srv://user:[email protected]/database
  • mongoexport : exports the data of a given collection in json format. By defaults print to stdout. We can specify a file to save it: mongoexport --uri mongodb+srv://user:[email protected]/database --collection=mycollection --out=myfile.json
  • mongorestore: imports data in BSON dump: mongorestore --uri <..> --drop dump: note using drop allows to drop the collection and replace with the dump
  • mongoimport: imports data in json: mongoimport --uri <..> --drop <filename>.json --collection <mycollection>.json: if collection is not specified, uses the collection with the same name as filename

MQL: Mongodb Query Language

Basic queries

connect to mongo

  • connect with mongo "mongodb+srv://user:[email protected]/admin": by default admin will contain infos about users:

basic views in the mongo shell

  • show dbs: shows the list of databases with their size. In addition to what i see on the atlas cloud, I also see a local and an admin table
  • use dbname to indicate we work with a specific db. You can verify the current db with db.getName()
  • to view the collections in this db: show collections

get queries

  • simple query: db.<collection_name>.find({key:"val"}): will load 20 docs and then we can type it to iterates through the cursor (a pointer [= direct address to memory location] to a result set of a query)
  • count results: db.<collection_name>.find(<query>).count()
  • pretty results: db.<collection_name>.find(<query>).pretty()
  • pass an empty query if you want to iterate through everything
  • get a random doc: db.<collection_name>.findOne()

insert

  • insert a doc: db.<collection_name>.insert(<doc>): pass an array to insert several NOTE: db.<collection>.insert([{"_id":1, "test":1},{"_id":1, "test":1},{"_id":3,"test":1}]) will produce a write error when inserting the second doc and the third doc will not be inserted. To insert all docs whose unique id is not in the db: db.<collection>.insert([{"_id":1, "test":1},{"_id":1, "test":1},{"_id":3,"test":1}], {"ordered":false})

update

  • update many docs: db.<collection>.updateMany(<query>, {"<op>":{<field1>:<value1>, <field2>, <value2>}}). Example: db.zips.updateMany({"city":"HUDSON"}, {"$inc":{"pop":10}}). List of operators:

  • update one doc: should be used when matching the _id field because we are sure there is only one match: db.zips.updateOne({"_id": <id>}, <updateOperation>)

  • all update operations:

    • {"$currentDate":{<field>:true}} same as {"$currentDate":{<field>:{"$type":"date}}}: stores current date as Date
    • {"$currentDate":{<field>:{"$type":"timestamp"}}}: : stores current date as timestamp
    • {"$inc":{<field>:<value>}}: increases field by value. Will fail if field is not a number
    • {"$min":{<field>:<value>}}: updates filed if value is less than existing field value. NOTE: if field is not nb, will set the field as value
    • {"$max":{<field>:<value>}}: updates filed if value is more than existing field value. NOTE: if field is not nb, will set the field as value
    • {"$mul":{<field>:<value>}}: multiplies field by value. Will fail if field is not a number
    • {"$rename":{<field>:<newname>}}: renames field
    • {"$set":{<field>:<value>}}: sets the value of a field
    • {"$setOnInsert":{<field>:<value>}}, {upsert:true}: sets the value of a field only if the operation resulted in an insert
    • {"$unset":{<field>:<value>}}: unsets a field. As what we pass as the value does not impact the output, we can pass "" in the value

delete

  • db.<collection>.deleteOne(<query>)
  • db.<collection>.deleteMany(<query>)
  • drop a collection from the mongo shell: db.collection.drop()

Advanced queries

comparison operators:

Used inside a query

  • {<field>:{<operator>:<value}
  • <op> can be:
    • "$eq": equal
    • "$ne": not equal
    • "$gt": greater than
    • "$gte": greater than or equal
    • "$lt": lower than
    • "$lte": lower than or equal
  • {<field>:<value} is equivalent to {<field>:{"$eq":<value>}}

logic operators:

Combines multiple queries

  • {<op>:[{<statement1>}, {<statement2>}, ...]}
    • $and: matches all the specified query clauses
    • $or: matches at least one specified query clauses
    • $nor: negates or: returns docs that fail to match all queries

Not operator: inverts the condition, can not be used as a top operator

  • $not: returns docs that dont match the query: {<field>:{"$not":<operator-exp>}}. Ex: db.inspections.find({"date":{"$not":{"$eq":"Feb 21 2015"}}})

implicit AND:

  • {<statement1>, <statement2>, ...} is the same as{"$and":[{<statement1>}, {<statement2>}, ...]}
  • when querying on the same field: {"population": {"$gt":15, "$lt":100}} is the same as {"$and":[{"population":{"$gt":15}},{"population":{"$lt":100}}]}
  • be careful with implicit AND : db.testdb.find({"$or":[{"b":"I"},{"b":"II"}], "$or":[{"a":1},{"a":3}]}): here, $or is declared twice in the same object so only the second $or will be considered => correct way to do it: db.testdb.find({$and:[{"$or":[{"b":"I"},{"b":"II"}]}, {"$or":[{"a":1},{"a":3}]}]})

Expressive $expr

Allows the use of aggregation expressions withing the query language

  • For ex: comparison of fields inside the same doc: db.collection.find({$expr:{$eq:["$<field1>", "$<field2>"]}})

NOTE: db.trips.find({"tripduration":{$gt:1200}, $expr:{$eq:["$start station id", "$end station id"]}}).count() is the same as db.trips.find({$expr:{$and:[{$gt:["$tripduration", 1200]},{$eq:["$start station id", "$end station id"]}]}}).count()

Array Operators

  • $push: adds element to array or turns a field into an array field if it was previously of a different type
  • when doing a find query on an array field, such as db.listingsAndReviews.findOne({"amenities":"Shampoo"}): the query will return all the docs where Shampoo is in the amenities array.
  • Now if the query is {"amenities":["Shampoo", "TV"]}), we will get docs where the array field is exactly ["Shampoo", "TV"] in that order.
  • $all: we get all elements where array field contains at least the given elements (order is not important): {"amenities":{$all:["Shampoo", "TV"]}})
  • $size: filter by array size: {"amenities":{$size:2, $all:["Shampoo", "TV"]}})

projections:

  • after a query: pass another object such as {bedrooms:1, amenities:1, _id:0} to only show the fields we want to get: for ex: db.listingsAndReviews.find({"amenities":{$all:["Free parking on premises", "Air conditioning", "Wifi"]}},{bedrooms:1, amenities:1, _id:0})
  • array field projections: here, scores array contains subdocuments: db.grades.find({"class_id":431},{scores:{$elemMatch:{score:{$gt:85}}}}) will only show the scores field if one of the elem of the array has a score above 85. Then it will only show the relevant elements
  • if $elemMatch is used in the query, the result is the full doc where at least one element of the array matches the condition

query subdocuments

  • dot notation: db.collection.find({"<field1>.<attr1>":<value>})
  • for array: .0, .1...

Aggregation framework

Everything we do using the query language can also be done using the aggregation framework

For ex:

  • standard MQL : db.listingsAndReviews.find({amenities:"Wifi"},{_id:0, address:1, price:1}).pretty()
  • with aggregation framework: db.listingsAndReviews.aggregate([{$match:{amenities:"Wifi"}}, {$project:{_id:0, address:1, price:1}}]).pretty()

Aggregation framework allows us to stack operations on data. It can allow us to create full pipelines. Example operators:

  • $group: takes incoming data stream and siphons it into multiple distinct reservoirs. Example: group by countries: db.listingsAndReviews.aggregate([{$project:{_id:0, address:1}},{$group:{_id:"$address.country", count:{$sum:1}}}])

Sort and limit

  • db.zips.find({},{pop:1}).sort({pop:-1}).limit(2) : limits to 2 results, sort by pop in descending order. Note: sort arg can be 1 (ascending) or -1 (descending)
  • Multi sort: <...>.sort({pop:1, "loc.y":-1})
  • can be used in aggregation framework: db.listingsAndReviews.aggregate([{$project:{_id:0, room_type:1}}, {$group:{_id:"$room_type", count:{$sum:1}}}, {$sort:{count:-1}}, {$limit:2}])

Note: when using sort and limit, regardless of their order, mongodb will always sort first

Introduction to indexes

  • Index makes a query more efficient
  • In a database, an index is a special data structure that stores a small portion of the collection's data set in an easy to traverse form
  • db.trips.createIndex({"birth year":1})
  • compound index: db.trips.createIndex({"start station id":1, "birth year":0})
  • See all indexes: db.trips.getIndexes()
  • drop an index: db.trips.dropIndex(<name>)
  • Note: if we pass -1 instead of 1, the index is created in descending order (note that it does not really matter for single field index)

Introduction to data modelling

  • Data modeling is a way to organize fields in a document to support your application performance and queryting capabilities
  • Data should be stored in the way that it is used: everything that is queried together should be stored together

upsert (update or insert)

  • upsert is a hybrid command between update and insert and should only be used when needed: db.collection.updateOne({<query>},{<update>}, {"upsert":true}) => if there is a query match, it will update it. If not it will insert a new document

About

mongodb commands

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published