Skip to content

HEmile/iswc-challenge

Repository files navigation

iswc-challenge

Getting started

Prerequisites

This repository uses Python >= 3.10

Be sure to run in a virtual python environment (e.g. conda, venv, mkvirtualenv, etc.)

Installation

  1. In the root directory of this repo run

    pip install -r requirements.txt

Usage

For running and evaluating the baseline, run :

python baseline.py -i "data/dev.jsonl" -o "predictions/baseline.pred.jsonl"
python evaluate.py -p "predictions/baseline.pred.jsonl" -g "data/dev.jsonl"

For running and evaluating our proposed GPT3 approach, make sure you set your OPENAI_API_KEY in the environmental variables. This will use the default values for training, i.e. text-davinci-002 model, data/dev.jsonl as input and predictions/gpt3.pred.jsonl as output. Run :

python gpt3_baseline
python evaluate -p "predictions/gpt3.pred.jsonl" -g "data/dev.jsonl"

For the scaling experiment, you need to change the flag model to the respective model. The options include: ['text-davinci-002', 'text-curie-001', 'text-babbage-001', 'text-ada-001']

python gpt3_baseline -i "data/dev.jsonl" -o "predictions/gpt3-ada.pred.jsonl" --model "text-ada-001"
python evaluate -p "predictions/gpt3.pred.jsonl" -g "data/dev.jsonl"

Tasks:

  • Make changes that the competition organisers suggest [priority]
    • Pull the changes from their repo
    • Check our performance on the updated train/val dataset
  • Dataset statistics (nice to include in the paper)
    • The number of answers per relation
    • Count the number of 'None' per relation
  • Logic integrity
    • Run for all prompts.
    • Report on performance difference.
  • Submit current version to leadership board
  • Look at failure cases
    • Wrong formatting? :: We tried different formatting - no significant improvement.
  • Improve recall via
    • Reduce temperature and generate multiple samples (k=3?)
    • Rephrase prompts? :: link to colab
  • General improvements
    • Can we use the logprob?
    • Are we using other models?

License

Distributed under the MIT License. See LICENSE for more information.

Authors (Alphabetical order)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published