Tensorflow implementation of Unsupervised Deep Embedding for Clustering Analysis.
>>> pip3 install -r requirements.txt
usage: train.py [-h] [--batch-size BATCH_SIZE] [--gpu-index GPU_INDEX]
optional arguments:
-h, --help show this help message and exit
--batch-size BATCH_SIZE
Train Batch Size
--gpu-index GPU_INDEX
GPU Index Number
The inference.py
returns the latent representation (z.tsv
, meta.tsv
(label information).
usage: inference.py [-h] [--gpu-index GPU_INDEX]
optional arguments:
-h, --help show this help message and exit
--gpu-index GPU_INDEX
GPU Index Number
For visualization, we use t-SNE by importing z.tsv
, meta.tsv
into Tensorboard.
The visualization using MNIST shows as follow.