forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add hnsw flat benchmark (facebookresearch#3857)
Summary: Pull Request resolved: facebookresearch#3857 add benchmarking for hnsw flat. ServiceLab requires us to register our python benchmarks with their custom python function in order to export the metrics correctly. I decided to split servicelab custom code inside `faiss/perf_tests/servicelab` folder as to not expose it to open source and the actual benchmarking logic for `hnsw` lives in `faiss/perf_tests/bench_hnsw.py` which will be exposed to open source Reviewed By: kuarora Differential Revision: D62316706 fbshipit-source-id: 6f88ed70ae78fa309a347371645fb012e25b55da
- Loading branch information
1 parent
d104275
commit dc55e11
Showing
1 changed file
with
221 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,221 @@ | ||
import argparse | ||
import resource | ||
import time | ||
from contextlib import contextmanager | ||
from dataclasses import dataclass | ||
from typing import Dict, Generator, List, Optional | ||
|
||
import faiss # @manual=//faiss/python:pyfaiss | ||
import numpy as np | ||
from faiss.contrib.datasets import ( # @manual=//faiss/contrib:faiss_contrib | ||
Dataset, | ||
SyntheticDataset, | ||
) | ||
|
||
US_IN_S = 1_000_000 | ||
|
||
|
||
@dataclass | ||
class PerfCounters: | ||
wall_time_s: float = 0.0 | ||
user_time_s: float = 0.0 | ||
system_time_s: float = 0.0 | ||
|
||
|
||
@contextmanager | ||
def timed_execution() -> Generator[PerfCounters, None, None]: | ||
pcounters = PerfCounters() | ||
wall_time_start = time.perf_counter() | ||
rusage_start = resource.getrusage(resource.RUSAGE_SELF) | ||
yield pcounters | ||
wall_time_end = time.perf_counter() | ||
rusage_end = resource.getrusage(resource.RUSAGE_SELF) | ||
pcounters.wall_time_s = wall_time_end - wall_time_start | ||
pcounters.user_time_s = rusage_end.ru_utime - rusage_start.ru_utime | ||
pcounters.system_time_s = rusage_end.ru_stime - rusage_start.ru_stime | ||
|
||
|
||
def is_perf_counter(key: str) -> bool: | ||
return key.endswith("_time_us") | ||
|
||
|
||
def accumulate_perf_counter( | ||
phase: str, | ||
t: PerfCounters, | ||
counters: Dict[str, int] | ||
): | ||
counters[f"{phase}_wall_time_us"] = int(t.wall_time_s * US_IN_S) | ||
counters[f"{phase}_user_time_us"] = int(t.user_time_s * US_IN_S) | ||
counters[f"{phase}_system_time_us"] = int(t.system_time_s * US_IN_S) | ||
|
||
|
||
def run_on_dataset( | ||
ds: Dataset, | ||
M: int, | ||
num_threads: | ||
int, | ||
efSearch: int = 16, | ||
efConstruction: int = 40 | ||
) -> Dict[str, int]: | ||
xq = ds.get_queries() | ||
xb = ds.get_database() | ||
|
||
nb, d = xb.shape | ||
nq, d = xq.shape | ||
|
||
k = 10 | ||
# pyre-ignore[16]: Module `faiss` has no attribute `omp_set_num_threads`. | ||
faiss.omp_set_num_threads(num_threads) | ||
index = faiss.IndexHNSWFlat(d, M) | ||
index.hnsw.efConstruction = 40 # default | ||
with timed_execution() as t: | ||
index.add(xb) | ||
counters = {} | ||
accumulate_perf_counter("add", t, counters) | ||
counters["nb"] = nb | ||
|
||
index.hnsw.efSearch = efSearch | ||
with timed_execution() as t: | ||
D, I = index.search(xq, k) | ||
accumulate_perf_counter("search", t, counters) | ||
counters["nq"] = nq | ||
counters["efSearch"] = efSearch | ||
counters["efConstruction"] = efConstruction | ||
counters["M"] = M | ||
counters["d"] = d | ||
|
||
return counters | ||
|
||
|
||
def run( | ||
d: int, | ||
nb: int, | ||
nq: int, | ||
M: int, | ||
num_threads: int, | ||
efSearch: int = 16, | ||
efConstruction: int = 40, | ||
) -> Dict[str, int]: | ||
ds = SyntheticDataset(d=d, nb=nb, nt=0, nq=nq, metric="L2", seed=1338) | ||
return run_on_dataset( | ||
ds, | ||
M=M, | ||
num_threads=num_threads, | ||
efSearch=efSearch, | ||
efConstruction=efConstruction, | ||
) | ||
|
||
|
||
def _merge_counters( | ||
element: Dict[str, int], accu: Optional[Dict[str, int]] = None | ||
) -> Dict[str, int]: | ||
if accu is None: | ||
return dict(element) | ||
else: | ||
assert accu.keys() <= element.keys(), ( | ||
"Accu keys must be a subset of element keys: " | ||
f"{accu.keys()} not a subset of {element.keys()}" | ||
) | ||
for key in accu.keys(): | ||
if is_perf_counter(key): | ||
accu[key] += element[key] | ||
return accu | ||
|
||
|
||
def run_with_iterations( | ||
iterations: int, | ||
d: int, | ||
nb: int, | ||
nq: int, | ||
M: int, | ||
num_threads: int, | ||
efSearch: int = 16, | ||
efConstruction: int = 40, | ||
) -> Dict[str, int]: | ||
result = None | ||
for _ in range(iterations): | ||
counters = run( | ||
d=d, | ||
nb=nb, | ||
nq=nq, | ||
M=M, | ||
num_threads=num_threads, | ||
efSearch=efSearch, | ||
efConstruction=efConstruction, | ||
) | ||
result = _merge_counters(counters, result) | ||
assert result is not None | ||
return result | ||
|
||
|
||
def _accumulate_counters( | ||
element: Dict[str, int], accu: Optional[Dict[str, List[int]]] = None | ||
) -> Dict[str, List[int]]: | ||
if accu is None: | ||
accu = {key: [value] for key, value in element.items()} | ||
return accu | ||
else: | ||
assert accu.keys() <= element.keys(), ( | ||
"Accu keys must be a subset of element keys: " | ||
f"{accu.keys()} not a subset of {element.keys()}" | ||
) | ||
for key in accu.keys(): | ||
accu[key].append(element[key]) | ||
return accu | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser(description="Benchmark HNSW") | ||
parser.add_argument("-M", "--M", type=int, required=True) | ||
parser.add_argument("-t", "--num-threads", type=int, required=True) | ||
parser.add_argument("-w", "--warm-up-iterations", type=int, default=0) | ||
parser.add_argument("-i", "--num-iterations", type=int, default=20) | ||
parser.add_argument("-r", "--num-repetitions", type=int, default=20) | ||
parser.add_argument("-s", "--ef-search", type=int, default=16) | ||
parser.add_argument("-c", "--ef-construction", type=int, default=40) | ||
parser.add_argument("-n", "--nb", type=int, default=5000) | ||
parser.add_argument("-q", "--nq", type=int, default=500) | ||
parser.add_argument("-d", "--d", type=int, default=128) | ||
args = parser.parse_args() | ||
|
||
if args.warm_up_iterations > 0: | ||
print(f"Warming up for {args.warm_up_iterations} iterations...") | ||
# warm-up | ||
run_with_iterations( | ||
iterations=args.warm_up_iterations, | ||
d=args.d, | ||
nb=args.nb, | ||
nq=args.nq, | ||
M=args.M, | ||
num_threads=args.num_threads, | ||
efSearch=args.ef_search, | ||
efConstruction=args.ef_construction, | ||
) | ||
print( | ||
f"Running benchmark with dataset(nb={args.nb}, nq={args.nq}, " | ||
f"d={args.d}), M={args.M}, num_threads={args.num_threads}, " | ||
f"efSearch={args.ef_search}, efConstruction={args.ef_construction}" | ||
) | ||
result = None | ||
for _ in range(args.num_repetitions): | ||
counters = run_with_iterations( | ||
iterations=args.num_iterations, | ||
d=args.d, | ||
nb=args.nb, | ||
nq=args.nq, | ||
M=args.M, | ||
num_threads=args.num_threads, | ||
efSearch=args.ef_search, | ||
efConstruction=args.ef_construction, | ||
) | ||
result = _accumulate_counters(counters, result) | ||
assert result is not None | ||
for counter, values in result.items(): | ||
if is_perf_counter(counter): | ||
print( | ||
"%s t=%.3f us (± %.4f)" % ( | ||
counter, | ||
np.mean(values), | ||
np.std(values) | ||
) | ||
) |