Skip to content

Commit

Permalink
Add information about jcenter aar package
Browse files Browse the repository at this point in the history
  • Loading branch information
daquexian committed May 7, 2019
1 parent 4f44a32 commit e42ac94
Show file tree
Hide file tree
Showing 2 changed files with 14 additions and 8 deletions.
11 changes: 7 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

[![Build Status](https://dev.azure.com/daquexian/dabnn/_apis/build/status/Android%20Build%20%26%20Test?branchName=master)](https://dev.azure.com/daquexian/dabnn/_build/latest?definitionId=2&branchName=master)
[![License](https://img.shields.io/badge/license-BSD--3--Clause-blue.svg)](LICENSE)
[![jcenter](https://img.shields.io/badge/dynamic/json.svg?label=jcenter&query=name&url=https%3A%2F%2Fapi.bintray.com%2Fpackages%2Fdaquexian566%2Fmaven%2Fdabnn%2Fversions%2F_latest)](https://bintray.com/daquexian566/maven/dabnn/_latestVersion)
[![Gitter Chat](https://img.shields.io/gitter/room/dabnn/dabnn.svg)](https://gitter.im/dabnn/dabnn)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/JDAI-CV/dabnn/pulls)

Expand Down Expand Up @@ -43,16 +44,14 @@ The following is the comparison between our dabnn and [Caffe](http://caffe.berke

![Comparison](images/comparison_en.png)

## Example project

Android app demo: https://github.com/JDAI-CV/dabnn-example

## Convert ONNX Model

We provide a conversion tool, named onnx2bnn, to convert an ONNX model to a dabnn model. To get the conversion tool, just build the project using the native toolchain (instead of arm cross-compiling toolchain). For Linux users, we provide pre-built onnx2bnn AppImage. Linux users can download it from [GitHub Releases](https://github.com/JDAI-CV/dabnn/releases). For the usage and other information about AppImage, please check out https://appimage.org .

Note: Binary convolution is a custom operator, so whether the ONNX model is dabnn-comptabile heavily depends on the implementation of the binary convolution in the training code. We will soon provide an dabnn-comptabile PyTorch implementation of binary convolution.

After conversion, the generated dabnn model can be deployed on armv8 devices. For Android developer, we have provided Android AAR package and published it on [jcenter](https://bintray.com/daquexian566/maven/dabnn/_latestVersion), for the usage please check out [example project](https://github.com/JDAI-CV/dabnn-example).

## Pretrained Models

We publish two pretrained binary neural network models based on [Bi-Real Net](https://arxiv.org/abs/1808.00278) on ImageNet. More pretrained models will be published in the future.
Expand All @@ -65,6 +64,10 @@ We publish two pretrained binary neural network models based on [Bi-Real Net](ht

We plan to participate the [ACM Multimedia 2019 Open Source Software Competition](https://www.acmmm.org/2019/call-for-open-source-software-competition/). Our implementation details will be presented in a 4-page short paper soon.

## Example project

Android app demo: https://github.com/JDAI-CV/dabnn-example

## License

[BSD 3 Clause](LICENSE)
11 changes: 7 additions & 4 deletions README_CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

[![Build Status](https://dev.azure.com/daquexian/dabnn/_apis/build/status/Android%20Build%20%26%20Test?branchName=master)](https://dev.azure.com/daquexian/dabnn/_build/latest?definitionId=2&branchName=master)
[![License](https://img.shields.io/badge/license-BSD--3--Clause-blue.svg)](LICENSE)
[![jcenter](https://img.shields.io/badge/dynamic/json.svg?label=jcenter&query=name&url=https%3A%2F%2Fapi.bintray.com%2Fpackages%2Fdaquexian566%2Fmaven%2Fdabnn%2Fversions%2F_latest)](https://bintray.com/daquexian566/maven/dabnn/_latestVersion)
[![Gitter Chat](https://img.shields.io/gitter/room/dabnn/dabnn.svg)](https://gitter.im/dabnn/dabnn)
[![PRs Welcome](https://img.shields.io/badge/PRs-welcome-brightgreen.svg)](https://github.com/JDAI-CV/dabnn/pulls)

Expand Down Expand Up @@ -45,16 +46,14 @@ dabnn_bireal18_imagenet_stem 43279353 ns 41533009 ns 14 <---

![Comparison](images/comparison_cn.png)

## 示例工程

Android app demo: https://github.com/JDAI-CV/dabnn-example

## 如何转换 ONNX 模型

我们提供模型转换工具 onnx2bnn 将 ONNX 模型转换为 dabnn 格式的模型。用本地编译工具链(而不是 arm 交叉编译工具链)编译这个项目就可以编译出 onnx2dnn。对 Linux 用户我们提供可以在 Linux 下无需编译直接运行的 AppImage,从 [GitHub Releases](https://github.com/JDAI-CV/dabnn/releases) 下载即可。AppImage 的使用方法和其它相关信息请参考 https://appimage.org/。

注意:因为二值卷积是一种自定义操作,所以 ONNX 模型是否与 dabnn 兼容极大程度上依赖于训练代码中二值卷积的实现。我们很快会提供一个与 dabnn 兼容的二值卷积 PyTorch 实现。

转换完成后得到的 dabnn 模型就可以在 armv8 设备上使用。对 Android 开发者我们已经把 Android AAR 包上传到了 [jcenter](https://bintray.com/daquexian566/maven/dabnn/_latestVersion),使用方法请看[示例工程](https://github.com/JDAI-CV/dabnn-example)

## 预训练模型

我们提供两个在 ImageNet 上训练的、基于 [Bi-Real Net](https://arxiv.org/abs/1808.00278) 的二值网络模型,将来还会有其它的模型发布。
Expand All @@ -67,6 +66,10 @@ Android app demo: https://github.com/JDAI-CV/dabnn-example

我们计划参加 [ACM Multimedia 2019 Open Source Software Competition](https://www.acmmm.org/2019/call-for-open-source-software-competition/). dabnn 的技术细节很快会在一篇四页的短论文中描述。

## 示例工程

Android app demo: https://github.com/JDAI-CV/dabnn-example

## 开源许可

[BSD 3 Clause](LICENSE)

0 comments on commit e42ac94

Please sign in to comment.