Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
For Caffe users, please refer to Caffe/README.md.
For PyTorch users, please refer to PyTorch/README.md
Note that, currently, the PyTorch implementation is inferior to the Caffe implementation (~3% performance drop on Sintel). These are due to differences in implementation between Caffe and PyTorch, such as image resizing and I/O.
PWC-Net fuses several classic optical flow estimation techniques, including image pyramid, warping, and cost volume, in an end-to-end trainable deep neural networks for achieving state-of-the-art results.
Talk at robust vision challenge workshop
Talk at CVPR 2018 conference (starts ~7:00)
If you use PWC-Net, please cite the following paper:
@InProceedings{Sun2018PWC-Net,
author = {Deqing Sun and Xiaodong Yang and Ming-Yu Liu and Jan Kautz},
title = {{PWC-Net}: {CNNs} for Optical Flow Using Pyramid, Warping, and Cost Volume},
booktitle = CVPR,
year = {2018},
}
or the arXiv paper
@article{sun2017pwc,
author={Sun, Deqing and Yang, Xiaodong and Liu, Ming-Yu and Kautz, Jan},
title={{PWC-Net}: {CNNs} for Optical Flow Using Pyramid, Warping, and Cost Volume},
journal={arXiv preprint arXiv:1709.02371},
year={2017}
}
Deqing Sun ([email protected])