Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make cholesky handle AbstractMatrix #44076

Merged
merged 3 commits into from
Feb 13, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 26 additions & 20 deletions stdlib/LinearAlgebra/src/cholesky.jl
Original file line number Diff line number Diff line change
Expand Up @@ -179,7 +179,9 @@ Base.iterate(C::CholeskyPivoted, ::Val{:done}) = nothing

# make a copy that allow inplace Cholesky factorization
@inline choltype(A) = promote_type(typeof(sqrt(oneunit(eltype(A)))), Float32)
@inline cholcopy(A) = copy_oftype(A, choltype(A))
@inline cholcopy(A::StridedMatrix) = copy_oftype(A, choltype(A))
@inline cholcopy(A::RealHermSymComplexHerm) = copy_oftype(A, choltype(A))
@inline cholcopy(A::AbstractMatrix) = copy_similar(A, choltype(A))

# _chol!. Internal methods for calling unpivoted Cholesky
## BLAS/LAPACK element types
Expand Down Expand Up @@ -269,9 +271,9 @@ function cholesky!(A::RealHermSymComplexHerm, ::NoPivot = NoPivot(); check::Bool
return Cholesky(C.data, A.uplo, info)
end

### for StridedMatrices, check that matrix is symmetric/Hermitian
### for AbstractMatrix, check that matrix is symmetric/Hermitian
"""
cholesky!(A::StridedMatrix, NoPivot(); check = true) -> Cholesky
cholesky!(A::AbstractMatrix, NoPivot(); check = true) -> Cholesky
The same as [`cholesky`](@ref), but saves space by overwriting the input `A`,
instead of creating a copy. An [`InexactError`](@ref) exception is thrown if
Expand All @@ -291,7 +293,7 @@ Stacktrace:
[...]
```
"""
function cholesky!(A::StridedMatrix, ::NoPivot = NoPivot(); check::Bool = true)
function cholesky!(A::AbstractMatrix, ::NoPivot = NoPivot(); check::Bool = true)
checksquare(A)
if !ishermitian(A) # return with info = -1 if not Hermitian
check && checkpositivedefinite(-1)
Expand Down Expand Up @@ -320,16 +322,16 @@ cholesky!(A::RealHermSymComplexHerm{<:Real}, ::RowMaximum; tol = 0.0, check::Boo
throw(ArgumentError("generic pivoted Cholesky factorization is not implemented yet"))
@deprecate cholesky!(A::RealHermSymComplexHerm{<:Real}, ::Val{true}; kwargs...) cholesky!(A, RowMaximum(); kwargs...) false

### for StridedMatrices, check that matrix is symmetric/Hermitian
### for AbstractMatrix, check that matrix is symmetric/Hermitian
"""
cholesky!(A::StridedMatrix, RowMaximum(); tol = 0.0, check = true) -> CholeskyPivoted
cholesky!(A::AbstractMatrix, RowMaximum(); tol = 0.0, check = true) -> CholeskyPivoted
The same as [`cholesky`](@ref), but saves space by overwriting the input `A`,
instead of creating a copy. An [`InexactError`](@ref) exception is thrown if the
factorization produces a number not representable by the element type of `A`,
e.g. for integer types.
"""
function cholesky!(A::StridedMatrix, ::RowMaximum; tol = 0.0, check::Bool = true)
function cholesky!(A::AbstractMatrix, ::RowMaximum; tol = 0.0, check::Bool = true)
checksquare(A)
if !ishermitian(A)
C = CholeskyPivoted(A, 'U', Vector{BlasInt}(),convert(BlasInt, 1),
Expand All @@ -350,7 +352,7 @@ end
Compute the Cholesky factorization of a dense symmetric positive definite matrix `A`
and return a [`Cholesky`](@ref) factorization. The matrix `A` can either be a [`Symmetric`](@ref) or [`Hermitian`](@ref)
[`StridedMatrix`](@ref) or a *perfectly* symmetric or Hermitian `StridedMatrix`.
[`AbstractMatrix`](@ref) or a *perfectly* symmetric or Hermitian `AbstractMatrix`.
The triangular Cholesky factor can be obtained from the factorization `F` via `F.L` and `F.U`,
where `A ≈ F.U' * F.U ≈ F.L * F.L'`.
Expand Down Expand Up @@ -397,11 +399,11 @@ julia> C.L * C.U == A
true
```
"""
cholesky(A::Union{StridedMatrix,RealHermSymComplexHerm{<:Real,<:StridedMatrix}},
::NoPivot=NoPivot(); check::Bool = true) = cholesky!(cholcopy(A); check = check)
cholesky(A::AbstractMatrix, ::NoPivot=NoPivot(); check::Bool = true) =
cholesky!(cholcopy(A); check)
@deprecate cholesky(A::Union{StridedMatrix,RealHermSymComplexHerm{<:Real,<:StridedMatrix}}, ::Val{false}; check::Bool = true) cholesky(A, NoPivot(); check) false

function cholesky(A::Union{StridedMatrix{Float16},RealHermSymComplexHerm{Float16,<:StridedMatrix}}, ::NoPivot=NoPivot(); check::Bool = true)
function cholesky(A::AbstractMatrix{Float16}, ::NoPivot=NoPivot(); check::Bool = true)
X = cholesky!(cholcopy(A); check = check)
return Cholesky{Float16}(X)
end
Expand All @@ -413,7 +415,7 @@ end
Compute the pivoted Cholesky factorization of a dense symmetric positive semi-definite matrix `A`
and return a [`CholeskyPivoted`](@ref) factorization. The matrix `A` can either be a [`Symmetric`](@ref)
or [`Hermitian`](@ref) [`StridedMatrix`](@ref) or a *perfectly* symmetric or Hermitian `StridedMatrix`.
or [`Hermitian`](@ref) [`AbstractMatrix`](@ref) or a *perfectly* symmetric or Hermitian `AbstractMatrix`.
The triangular Cholesky factor can be obtained from the factorization `F` via `F.L` and `F.U`,
and the permutation via `F.p`, where `A[F.p, F.p] ≈ Ur' * Ur ≈ Lr * Lr'` with `Ur = F.U[1:F.rank, :]`
Expand Down Expand Up @@ -463,11 +465,15 @@ julia> l == C.L && u == C.U
true
```
"""
cholesky(A::Union{StridedMatrix,RealHermSymComplexHerm{<:Real,<:StridedMatrix}},
::RowMaximum; tol = 0.0, check::Bool = true) =
cholesky!(cholcopy(A), RowMaximum(); tol = tol, check = check)
cholesky(A::AbstractMatrix, ::RowMaximum; tol = 0.0, check::Bool = true) =
cholesky!(cholcopy(A), RowMaximum(); tol, check)
@deprecate cholesky(A::Union{StridedMatrix,RealHermSymComplexHerm{<:Real,<:StridedMatrix}}, ::Val{true}; tol = 0.0, check::Bool = true) cholesky(A, RowMaximum(); tol, check) false

function cholesky(A::AbstractMatrix{Float16}, ::RowMaximum; tol = 0.0, check::Bool = true)
X = cholesky!(cholcopy(A), RowMaximum(); tol, check)
return CholeskyPivoted{Float16}(X)
end

## Number
function cholesky(x::Number, uplo::Symbol=:U)
C, info = _chol!(x, uplo)
Expand Down Expand Up @@ -524,7 +530,7 @@ end
Base.propertynames(F::Cholesky, private::Bool=false) =
(:U, :L, :UL, (private ? fieldnames(typeof(F)) : ())...)

function getproperty(C::CholeskyPivoted{T}, d::Symbol) where T<:BlasFloat
function getproperty(C::CholeskyPivoted{T}, d::Symbol) where {T}
Cfactors = getfield(C, :factors)
Cuplo = getfield(C, :uplo)
if d === :U
Expand Down Expand Up @@ -595,7 +601,7 @@ function ldiv!(C::CholeskyPivoted{T}, B::StridedMatrix{T}) where T<:BlasFloat
B
end

function ldiv!(C::CholeskyPivoted, B::StridedVector)
function ldiv!(C::CholeskyPivoted, B::AbstractVector)
if C.uplo == 'L'
ldiv!(adjoint(LowerTriangular(C.factors)),
ldiv!(LowerTriangular(C.factors), permute!(B, C.piv)))
Expand All @@ -606,7 +612,7 @@ function ldiv!(C::CholeskyPivoted, B::StridedVector)
invpermute!(B, C.piv)
end

function ldiv!(C::CholeskyPivoted, B::StridedMatrix)
function ldiv!(C::CholeskyPivoted, B::AbstractMatrix)
n = size(C, 1)
for i in 1:size(B, 2)
permute!(view(B, 1:n, i), C.piv)
Expand All @@ -624,15 +630,15 @@ function ldiv!(C::CholeskyPivoted, B::StridedMatrix)
B
end

function rdiv!(B::StridedMatrix, C::Cholesky{<:Any,<:AbstractMatrix})
function rdiv!(B::AbstractMatrix, C::Cholesky{<:Any,<:AbstractMatrix})
if C.uplo == 'L'
return rdiv!(rdiv!(B, adjoint(LowerTriangular(C.factors))), LowerTriangular(C.factors))
else
return rdiv!(rdiv!(B, UpperTriangular(C.factors)), adjoint(UpperTriangular(C.factors)))
end
end

function LinearAlgebra.rdiv!(B::StridedMatrix, C::CholeskyPivoted)
function LinearAlgebra.rdiv!(B::AbstractMatrix, C::CholeskyPivoted)
n = size(C, 2)
for i in 1:size(B, 1)
permute!(view(B, i, 1:n), C.piv)
Expand Down
6 changes: 3 additions & 3 deletions stdlib/LinearAlgebra/src/diagonal.jl
Original file line number Diff line number Diff line change
Expand Up @@ -753,11 +753,11 @@ function cholesky!(A::Diagonal, ::NoPivot = NoPivot(); check::Bool = true)
Cholesky(A, 'U', convert(BlasInt, info))
end
@deprecate cholesky!(A::Diagonal, ::Val{false}; check::Bool = true) cholesky!(A::Diagonal, NoPivot(); check) false

cholesky(A::Diagonal, ::NoPivot = NoPivot(); check::Bool = true) =
cholesky!(cholcopy(A), NoPivot(); check = check)
@deprecate cholesky(A::Diagonal, ::Val{false}; check::Bool = true) cholesky(A::Diagonal, NoPivot(); check) false

@inline cholcopy(A::Diagonal) = copy_oftype(A, choltype(A))
@inline cholcopy(A::RealHermSymComplexHerm{<:Real,<:Diagonal}) = copy_oftype(A, choltype(A))

function getproperty(C::Cholesky{<:Any,<:Diagonal}, d::Symbol)
Cfactors = getfield(C, :factors)
if d in (:U, :L, :UL)
Expand Down
7 changes: 7 additions & 0 deletions stdlib/LinearAlgebra/src/special.jl
Original file line number Diff line number Diff line change
Expand Up @@ -376,3 +376,10 @@ Base._cat(dims, xs::_TypedDenseConcatGroup{T}...) where {T} = Base.cat_t(T, xs..
vcat(A::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_vcat(T, A...)
hcat(A::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_hcat(T, A...)
hvcat(rows::Tuple{Vararg{Int}}, xs::_TypedDenseConcatGroup{T}...) where {T} = Base.typed_hvcat(T, rows, xs...)

# factorizations
function cholesky(S::RealHermSymComplexHerm{<:Real,<:SymTridiagonal}, ::NoPivot = NoPivot(); check::Bool = true)
T = choltype(eltype(S))
B = Bidiagonal{T}(diag(S, 0), diag(S, S.uplo == 'U' ? 1 : -1), sym_uplo(S.uplo))
cholesky!(Hermitian(B, sym_uplo(S.uplo)), NoPivot(); check = check)
end
9 changes: 9 additions & 0 deletions stdlib/LinearAlgebra/src/tridiag.jl
Original file line number Diff line number Diff line change
Expand Up @@ -854,3 +854,12 @@ function dot(x::AbstractVector, A::Tridiagonal, y::AbstractVector)
r += dot(adjoint(du[nx-1])*x₀ + adjoint(d[nx])*x₊, y[nx])
return r
end

function cholesky(S::SymTridiagonal, ::NoPivot = NoPivot(); check::Bool = true)
if !ishermitian(S)
check && checkpositivedefinite(-1)
return Cholesky(S, 'U', convert(BlasInt, -1))
end
T = choltype(eltype(S))
cholesky!(Hermitian(Bidiagonal{T}(diag(S, 0), diag(S, 1), :U)), NoPivot(); check = check)
end
22 changes: 21 additions & 1 deletion stdlib/LinearAlgebra/test/cholesky.jl
Original file line number Diff line number Diff line change
Expand Up @@ -124,8 +124,15 @@ end
end

# test cholesky of 2x2 Strang matrix
S = Matrix{eltya}(SymTridiagonal([2, 2], [-1]))
S = SymTridiagonal{eltya}([2, 2], [-1])
for uplo in (:U, :L)
@test Matrix(@inferred cholesky(Hermitian(S, uplo))) S
if eltya <: Real
@test Matrix(@inferred cholesky(Symmetric(S, uplo))) S
end
end
@test Matrix(cholesky(S).U) [2 -1; 0 sqrt(eltya(3))] / sqrt(eltya(2))
@test Matrix(cholesky(S)) S

# test extraction of factor and re-creating original matrix
if eltya <: Real
Expand Down Expand Up @@ -371,6 +378,10 @@ end
@test D CD.L * CD.U
@test CD.info == 0

F = cholesky(Hermitian(I(3)))
@test F isa Cholesky{Float64,<:Diagonal}
@test Matrix(F) I(3)

# real, failing
@test_throws PosDefException cholesky(Diagonal([1.0, -2.0]))
Dnpd = cholesky(Diagonal([1.0, -2.0]); check = false)
Expand Down Expand Up @@ -502,6 +513,15 @@ end
@test B.U B32.U
@test B.L B32.L
@test B.UL B32.UL
@test Matrix(B) A
B = cholesky(A, RowMaximum())
B32 = cholesky(Float32.(A), RowMaximum())
@test B isa CholeskyPivoted{Float16,Matrix{Float16}}
@test B.U isa UpperTriangular{Float16, Matrix{Float16}}
@test B.L isa LowerTriangular{Float16, Matrix{Float16}}
@test B.U B32.U
@test B.L B32.L
@test Matrix(B) A
end

@testset "det and logdet" begin
Expand Down