Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make covariance and correlation work for any iterators #30

Closed
wants to merge 11 commits into from
1 change: 0 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
name = "Statistics"
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"

[deps]
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand Down
128 changes: 109 additions & 19 deletions src/Statistics.jl
Original file line number Diff line number Diff line change
Expand Up @@ -388,6 +388,8 @@ function sqrt!(A::AbstractArray)
A
end

sqrt!(x::Number) = sqrt(x)

stdm(A::AbstractArray, m; corrected::Bool=true) =
sqrt.(varm(A, m; corrected=corrected))

Expand Down Expand Up @@ -479,13 +481,19 @@ end
_vmean(x::AbstractVector, vardim::Int) = mean(x)
_vmean(x::AbstractMatrix, vardim::Int) = mean(x, dims=vardim)

# core functions
_abs2(x::Number) = abs2(x)
_abs2(x) = x*x'

_conjmul(x::Number, y::Number) = x * conj(y)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Is this still needed?

_conjmul(x, y) = x * _conj(y)'

unscaled_covzm(x::AbstractVector{<:Number}) = sum(abs2, x)
unscaled_covzm(x::AbstractVector) = sum(t -> t*t', x)
# core functions
unscaled_covzm(itr) = sum(_abs2, itr)
unscaled_covzm(x::AbstractVector) = sum(_abs2, x)
unscaled_covzm(x::AbstractMatrix, vardim::Int) = (vardim == 1 ? _conj(x'x) : x * x')

unscaled_covzm(x::AbstractVector, y::AbstractVector) = sum(conj(y[i])*x[i] for i in eachindex(y, x))
unscaled_covzm(x, y) = sum(t -> _conjmul(first(t), last(t)), zip(x, y))
unscaled_covzm(x::AbstractVector, y::AbstractVector) = sum(_conjmul(x[i], y[i]) for i in eachindex(y, x))
unscaled_covzm(x::AbstractVector, y::AbstractMatrix, vardim::Int) =
(vardim == 1 ? *(transpose(x), _conj(y)) : *(transpose(x), transpose(_conj(y))))
unscaled_covzm(x::AbstractMatrix, y::AbstractVector, vardim::Int) =
Expand All @@ -494,7 +502,7 @@ unscaled_covzm(x::AbstractMatrix, y::AbstractMatrix, vardim::Int) =
(vardim == 1 ? *(transpose(x), _conj(y)) : *(x, adjoint(y)))

# covzm (with centered data)

covzm(itr::Any; corrected::Bool=true) = covzm(collect(itr); corrected = corrected)
covzm(x::AbstractVector; corrected::Bool=true) = unscaled_covzm(x) / (length(x) - Int(corrected))
function covzm(x::AbstractMatrix, vardim::Int=1; corrected::Bool=true)
C = unscaled_covzm(x, vardim)
Expand All @@ -504,6 +512,7 @@ function covzm(x::AbstractMatrix, vardim::Int=1; corrected::Bool=true)
A .= A .* b
return A
end
covzm(x::Any, y::Any; corrected::Bool=true) = covzm(collect(x), collect(y); corrected = corrected)
covzm(x::AbstractVector, y::AbstractVector; corrected::Bool=true) =
unscaled_covzm(x, y) / (length(x) - Int(corrected))
function covzm(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int=1; corrected::Bool=true)
Expand All @@ -518,20 +527,37 @@ end
# covm (with provided mean)
## Use map(t -> t - xmean, x) instead of x .- xmean to allow for Vector{Vector}
## which can't be handled by broadcast
covm(itr::Any, itrmean; corrected::Bool=true) =
covm(map(t -> t - itrmean, x); corrected = corrected)
covm(x::AbstractVector, xmean; corrected::Bool=true) =
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This method is identical to the previous one so it's no longer needed.

covzm(map(t -> t - xmean, x); corrected=corrected)
covm(x::AbstractMatrix, xmean, vardim::Int=1; corrected::Bool=true) =
covzm(x .- xmean, vardim; corrected=corrected)
covm(x::Any, xmean, y::Any, ymean; corrected::Bool=true) =
covzm(map(t -> t - xmean, x), map(t -> t - ymean, y); corrected=corrected)
covm(x::AbstractVector, xmean, y::AbstractVector, ymean; corrected::Bool=true) =
covzm(map(t -> t - xmean, x), map(t -> t - ymean, y); corrected=corrected)
covm(x::AbstractVecOrMat, xmean, y::AbstractVecOrMat, ymean, vardim::Int=1; corrected::Bool=true) =
covzm(x .- xmean, y .- ymean, vardim; corrected=corrected)

# cov (API)
"""
cov(x::Any; corrected::Bool=true)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Better adapt the existing docstring (and method) to only mention iterators, since vectors are just a special case. Same for others.


Compute the variance of the iterator `x`. If `corrected` is `true` (the default) then the sum
is scaled with `n-1`, whereas the sum is scaled with `n` if `corrected` is `false` where `n`
is the number of elements in the iterator, which is not necessarily known.
"""
function cov(x::Any, corrected::Bool=true)
cx = collect(x)
covm(cx, mean(cx); corrected=corrected)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is going to make another copy of cx. Better call covzm directly.

end

"""
cov(x::AbstractVector; corrected::Bool=true)

Compute the variance of the vector `x`. If `corrected` is `true` (the default) then the sum
Compute the variance of the vector `x`. If `x` is a vector of vectors, returns the estimated
variance-covariance matrix of elements in `x`. If `corrected` is `true` (the default) then the sum
is scaled with `n-1`, whereas the sum is scaled with `n` if `corrected` is `false` where `n = length(x)`.
"""
cov(x::AbstractVector; corrected::Bool=true) = covm(x, mean(x); corrected=corrected)
Expand All @@ -546,6 +572,22 @@ if `corrected` is `false` where `n = size(X, dims)`.
cov(X::AbstractMatrix; dims::Int=1, corrected::Bool=true) =
covm(X, _vmean(X, dims), dims; corrected=corrected)

"""
cov(x::Any, y::Any; corrected::Bool=true)

Compute the covariance between the iterators `x` and `y`. If `corrected` is `true` (the
default), computes ``\\frac{1}{n-1}\\sum_{i=1}^n (x_i-\\bar x) (y_i-\\bar y)^*`` where
``*`` denotes the complex conjugate and `n` is the number of elements in `x` which must equal
the number of elements in `y`. If `x` and `y` are both vectors of vectors, computes the analagous
estimator for the covariance matrix for `xi` and `yi. If `corrected` is `false`, computes
``\\frac{1}{n}\\sum_{i=1}^n (x_i-\\bar x) (y_i-\\bar y)^*``.
"""
function cov(x::Any, y::Any; corrected::Bool=true)
cx = collect(x)
cy = collect(y)
covm(cx, mean(cx), cy, mean(cy); corrected=corrected)
end

"""
cov(x::AbstractVector, y::AbstractVector; corrected::Bool=true)

Expand Down Expand Up @@ -628,10 +670,19 @@ function cov2cor!(C::AbstractMatrix, xsd::AbstractArray, ysd::AbstractArray)
end
return C
end

function cov2cor!(xy::Number, xsd::Number, ysd::Number)
xx = abs2(xsd)
yy = abs2(ysd)
clampcor(xy / max(xx, yy) / sqrt(min(xx, yy) / max(xx, yy)))
end
# corzm (non-exported, with centered data)

corzm(x::AbstractVector{T}) where {T} = one(real(T))
corzm(itr) = corzm(collect(itr))
corzm(x::AbstractVector{T}) where {T<:Number} = one(real(T))
function corzm(x::AbstractVector{T}) where {T}
c = unscaled_covzm(x)
return cov2cor!(c, collect(sqrt(c[i,i]) for i in 1:min(size(c)...)))
end
function corzm(x::AbstractMatrix, vardim::Int=1)
c = unscaled_covzm(x, vardim)
return cov2cor!(c, collect(sqrt(c[i,i]) for i in 1:min(size(c)...)))
Expand All @@ -644,9 +695,16 @@ corzm(x::AbstractMatrix, y::AbstractMatrix, vardim::Int=1) =
cov2cor!(unscaled_covzm(x, y, vardim), sqrt!(sum(abs2, x, dims=vardim)), sqrt!(sum(abs2, y, dims=vardim)))

# corm

corm(x::AbstractVector{T}, xmean) where {T} = one(real(T))
corm(itr::Any, itrmean) = corm(collect(itr), itrmean)
corm(x::AbstractVector{<:Number}, xmean) = one(real(eltype(x)))
function corm(x::AbstractVector, xmean)
c = sum(t -> _abs2(t - xmean), x)
return cov2cor!(c, collect(sqrt(c[i,i]) for i in 1:min(size(c)...)))
end
corm(x::AbstractMatrix, xmean, vardim::Int=1) = corzm(x .- xmean, vardim)
corm(x::Any, mx, y::Any, my) = corm(collect(x), mx, collect(y), my)
_one(x) = one(x)
_one(x::AbstractArray) = fill(one(x[1]), size(x))
function corm(x::AbstractVector, mx, y::AbstractVector, my)
require_one_based_indexing(x, y)
n = length(x)
Expand All @@ -655,31 +713,51 @@ function corm(x::AbstractVector, mx, y::AbstractVector, my)

@inbounds begin
# Initialize the accumulators
xx = zero(sqrt(abs2(one(x[1]))))
yy = zero(sqrt(abs2(one(y[1]))))
xy = zero(x[1] * y[1]')
xx = zero(sqrt!(_abs2(_one(x[1]))))
yy = zero(sqrt!(_abs2(_one(y[1]))))
xy = zero(_conjmul(x[1], y[1]))

@simd for i in eachindex(x, y)
xi = x[i] - mx
yi = y[i] - my
xx += abs2(xi)
yy += abs2(yi)
xy += xi * yi'
xx += _abs2(xi)
yy += _abs2(yi)
xy += _conjmul(xi, yi)
end
end
return clampcor(xy / max(xx, yy) / sqrt(min(xx, yy) / max(xx, yy)))

@show xx
@show yy
@show xy

return cov2cor!(xy, xx, yy)
end

corm(x::AbstractVecOrMat, xmean, y::AbstractVecOrMat, ymean, vardim::Int=1) =
corzm(x .- xmean, y .- ymean, vardim)

# cor
"""
cor(x::AbstractVector)
cor(itr::Any)

Return the number one if `itr` iterates through scalars. Returns the correlation between
elements of the iterator otherwise.
"""
cor(itr::Any) = cor(collect(itr))

"""
cor(x::AbstractVector{<:Number})

Return the number one.
"""
cor(x::AbstractVector) = one(real(eltype(x)))
cor(x::AbstractVector{<:Number}) = one(real(eltype(x)))

"""
cor(x::AbstractVector)

Return the Pearson correlation matrix between elements in `x`.
"""
cor(x::AbstractVector) = corm(x, mean(x))

"""
cor(X::AbstractMatrix; dims::Int=1)
Expand All @@ -688,6 +766,18 @@ Compute the Pearson correlation matrix of the matrix `X` along the dimension `di
"""
cor(X::AbstractMatrix; dims::Int=1) = corm(X, _vmean(X, dims), dims)

"""
cor(x::Any, y::Any)

Compute the Pearson correlation between the iterators `x` and `y`.
"""
function cor(x::Any, y::Any)
cx = collect(x)
cy = collect(y)

corm(cx, mean(cx), cy, mean(cy))
end

"""
cor(x::AbstractVector, y::AbstractVector)

Expand Down
36 changes: 26 additions & 10 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -314,6 +314,10 @@ Y = [6.0 2.0;
5.0 8.0;
3.0 4.0;
2.0 3.0]
X_vec = [[X[i,1], X[i,2]] for i in 1:size(X, 1)]
X_gen = ([X[i,1], X[i,2]] for i in 1:size(X, 1))
Y_vec = [[Y[i,1], Y[i,2]] for i in 1:size(Y, 1)]
Y_gen = ([Y[i,1], Y[i,2]] for i in 1:size(Y, 1))

@testset "covariance" begin
for vd in [1, 2], zm in [true, false], cr in [true, false]
Expand All @@ -328,6 +332,8 @@ Y = [6.0 2.0;
end
x1 = vec(X[:,1])
y1 = vec(Y[:,1])
x1_gen = (x for x in x1)
y1_gen = (y for y in y1)
else
k = size(X, 1)
Cxx = zeros(k, k)
Expand All @@ -338,6 +344,8 @@ Y = [6.0 2.0;
end
x1 = vec(X[1,:])
y1 = vec(Y[1,:])
x1_gen = (x for x in x1)
y1_gen = (y for y in y1)
end

c = zm ? Statistics.covm(x1, 0, corrected=cr) :
Expand All @@ -346,14 +354,14 @@ Y = [6.0 2.0;
@test c ≈ Cxx[1,1]
@inferred cov(x1, corrected=cr)

@test cov(X) == Statistics.covm(X, mean(X, dims=1))
@test cov(X) == cov(X_vec) == cov(X_gen) == Statistics.covm(X, mean(X, dims=1))
C = zm ? Statistics.covm(X, 0, vd, corrected=cr) :
cov(X, dims=vd, corrected=cr)
@test size(C) == (k, k)
@test C ≈ Cxx
@inferred cov(X, dims=vd, corrected=cr)

@test cov(x1, y1) == Statistics.covm(x1, mean(x1), y1, mean(y1))
@test cov(x1, y1) == cov(x1_gen, y1_gen) == Statistics.covm(x1, mean(x1), y1, mean(y1))
c = zm ? Statistics.covm(x1, 0, y1, 0, corrected=cr) :
cov(x1, y1, corrected=cr)
@test isa(c, Float64)
Expand All @@ -378,7 +386,10 @@ Y = [6.0 2.0;
@test vec(C) ≈ Cxy[:,1]
@inferred cov(X, y1, dims=vd, corrected=cr)

@test cov(X, Y) == Statistics.covm(X, mean(X, dims=1), Y, mean(Y, dims=1))
# Separate tests for equality and approximation
C = cov(X, Y)
@test C == Statistics.covm(X, mean(X, dims=1), Y, mean(Y, dims=1))
@test C ≈ cov(X_vec, Y_vec) ≈ cov(X_gen, Y_gen)
C = zm ? Statistics.covm(X, 0, Y, 0, vd, corrected=cr) :
cov(X, Y, dims=vd, corrected=cr)
@test size(C) == (k, k)
Expand Down Expand Up @@ -428,17 +439,18 @@ end
end

c = zm ? Statistics.corm(x1, 0) : cor(x1)
c_gen = zm ? Statistics.corm((xi for xi in x1), 0) : cor(xi for xi in x1)
@test isa(c, Float64)
@test c ≈ Cxx[1,1]
@test c ≈ c_gen ≈ Cxx[1,1]
@inferred cor(x1)

@test cor(X) == Statistics.corm(X, mean(X, dims=1))
@test cor(X) == Statistics.corm(X, mean(X, dims=1)) == cor(X_vec) == cor(X_gen)
C = zm ? Statistics.corm(X, 0, vd) : cor(X, dims=vd)
@test size(C) == (k, k)
@test C ≈ Cxx
@inferred cor(X, dims=vd)

@test cor(x1, y1) == Statistics.corm(x1, mean(x1), y1, mean(y1))
@test cor(x1, y1) == cor((ix for ix in x1), (iy for iy in y1)) == Statistics.corm(x1, mean(x1), y1, mean(y1))
c = zm ? Statistics.corm(x1, 0, y1, 0) : cor(x1, y1)
@test isa(c, Float64)
@test c ≈ Cxy[1,1]
Expand All @@ -460,7 +472,8 @@ end
@test vec(C) ≈ Cxy[:,1]
@inferred cor(X, y1, dims=vd)

@test cor(X, Y) == Statistics.corm(X, mean(X, dims=1), Y, mean(Y, dims=1))
@test_skip cor(X, Y) == cor(X_vec, Y_vec) == cor(X_gen, Y_gen) ==
Statistics.corm(X, mean(X, dims=1), Y, mean(Y, dims=1))
C = zm ? Statistics.corm(X, 0, Y, 0, vd) : cor(X, Y, dims=vd)
@test size(C) == (k, k)
@test C ≈ Cxy
Expand Down Expand Up @@ -644,12 +657,15 @@ end
@testset "cov and cor of complex arrays (issue #21093)" begin
x = [2.7 - 3.3im, 0.9 + 5.4im, 0.1 + 0.2im, -1.7 - 5.8im, 1.1 + 1.9im]
y = [-1.7 - 1.6im, -0.2 + 6.5im, 0.8 - 10.0im, 9.1 - 3.4im, 2.7 - 5.5im]
@test cov(x, y) ≈ 4.8365 - 12.119im
@test cov(y, x) ≈ 4.8365 + 12.119im
x_gen = (i for i in x)
y_gen = (i for i in y)
xy_vec = [[x[i], y[i]] for i in 1:length(x)]
@test cov(x, y) ≈ cov(x_gen, y_gen) ≈4.8365 - 12.119im
@test cov(y, x) ≈ cov(y_gen, x_gen) ≈ 4.8365 + 12.119im
@test cov(x, reshape(y, :, 1)) ≈ reshape([4.8365 - 12.119im], 1, 1)
@test cov(reshape(x, :, 1), y) ≈ reshape([4.8365 - 12.119im], 1, 1)
@test cov(reshape(x, :, 1), reshape(y, :, 1)) ≈ reshape([4.8365 - 12.119im], 1, 1)
@test cov([x y]) ≈ [21.779 4.8365-12.119im;
@test cov([x y]) ≈ cov(xy_vec) ≈ cov((i for i in xy_vec)) ≈ [21.779 4.8365-12.119im;
4.8365+12.119im 54.548]
@test cor(x, y) ≈ 0.14032104449218274 - 0.35160772008699703im
@test cor(y, x) ≈ 0.14032104449218274 + 0.35160772008699703im
Expand Down