Skip to content

Commit

Permalink
[Feature] Add RotatedCocoMetric (open-mmlab#557)
Browse files Browse the repository at this point in the history
* Add Rotated COCO Metric

* Fix

Co-authored-by: Yue Zhou <[email protected]>
  • Loading branch information
liuyanyi and zytx121 committed Oct 25, 2022
1 parent 4711ad9 commit 9c1bb33
Show file tree
Hide file tree
Showing 3 changed files with 393 additions and 2 deletions.
3 changes: 2 additions & 1 deletion mmrotate/evaluation/metrics/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .dota_metric import DOTAMetric
from .rotated_coco_metric import RotatedCocoMetric

__all__ = ['DOTAMetric']
__all__ = ['DOTAMetric', 'RotatedCocoMetric']
390 changes: 390 additions & 0 deletions mmrotate/evaluation/metrics/rotated_coco_metric.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,390 @@
# Copyright (c) OpenMMLab. All rights reserved.
import datetime
import itertools
import os.path as osp
import tempfile
from collections import OrderedDict
from typing import Dict, Optional, Sequence

import cv2
import numpy as np
import pycocotools.mask as maskUtils
from mmcv.ops import box_iou_rotated
from mmdet.datasets.api_wrappers import COCO
from mmdet.evaluation import CocoMetric
from mmengine import MMLogger
from mmengine.fileio import dump, load
from pycocotools.cocoeval import COCOeval
from terminaltables import AsciiTable

from mmrotate.core import RotatedBoxes
from mmrotate.registry import METRICS


def qbox2rbox_list(boxes: list) -> list:
"""Convert quadrilateral boxes to rotated boxes.
Args:
boxes (list): Quadrilateral box list with shape of (8).
Returns:
List: Rotated box list with shape of (5).
"""
pts = np.array(boxes, dtype=np.float32).reshape(4, 2)
(x, y), (w, h), angle = cv2.minAreaRect(pts)
return [x, y, w, h, angle / 180 * np.pi]


class RotatedCocoEval(COCOeval):
"""This is a wrapper to support Rotated Box Eval."""

def computeIoU(self, imgId, catId):
p = self.params
if p.useCats:
gt = self._gts[imgId, catId]
dt = self._dts[imgId, catId]
else:
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
if len(gt) == 0 and len(dt) == 0:
return []
inds = np.argsort([-d['score'] for d in dt], kind='mergesort')
dt = [dt[i] for i in inds]
if len(dt) > p.maxDets[-1]:
dt = dt[0:p.maxDets[-1]]

if p.iouType == 'segm':
# For segm, its same with original COCOeval
g = [g['segmentation'] for g in gt]
d = [d['segmentation'] for d in dt]
# compute iou between each dt and gt region
iscrowd = [int(o['iscrowd']) for o in gt]
ious = maskUtils.iou(d, g, iscrowd)
elif p.iouType == 'bbox':
# Modified for Rotated Box
g = [g['bbox'] for g in gt]
d = [d['bbox'] for d in dt]
# Convert List[List[float]] to Tensor for iou compute
g = RotatedBoxes(g).tensor
d = RotatedBoxes(d).tensor
ious = box_iou_rotated(d, g)
else:
raise Exception('unknown iouType for iou computation')

return ious


@METRICS.register_module()
class RotatedCocoMetric(CocoMetric):
"""Rotated COCO evaluation metric."""

default_prefix: Optional[str] = 'r_coco'

def results2json(self, results: Sequence[dict],
outfile_prefix: str) -> dict:
"""Dump the detection results to a COCO style json file.
There are 3 types of results: proposals, bbox predictions, mask
predictions, and they have different data types. This method will
automatically recognize the type, and dump them to json files.
Args:
results (Sequence[dict]): Testing results of the
dataset.
outfile_prefix (str): The filename prefix of the json files. If the
prefix is "somepath/xxx", the json files will be named
"somepath/xxx.bbox.json", "somepath/xxx.segm.json",
"somepath/xxx.proposal.json".
Returns:
dict: Possible keys are "bbox", "segm", "proposal", and
values are corresponding filenames.
"""
bbox_json_results = []
segm_json_results = [] if 'masks' in results[0] else None
for idx, result in enumerate(results):
image_id = result.get('img_id', idx)
labels = result['labels']
bboxes = result['bboxes']
scores = result['scores']
# bbox results
for i, label in enumerate(labels):
data = dict()
data['image_id'] = image_id
data['bbox'] = bboxes[i].tolist()
data['score'] = float(scores[i])
data['category_id'] = self.cat_ids[label]
bbox_json_results.append(data)

if segm_json_results is None:
continue

# segm results
masks = result['masks']
mask_scores = result.get('mask_scores', scores)
for i, label in enumerate(labels):
data = dict()
data['image_id'] = image_id
data['bbox'] = self.xyxy2xywh(bboxes[i])
data['score'] = float(mask_scores[i])
data['category_id'] = self.cat_ids[label]
if isinstance(masks[i]['counts'], bytes):
masks[i]['counts'] = masks[i]['counts'].decode()
data['segmentation'] = masks[i]
segm_json_results.append(data)

result_files = dict()
result_files['bbox'] = f'{outfile_prefix}.bbox.json'
result_files['proposal'] = f'{outfile_prefix}.bbox.json'
dump(bbox_json_results, result_files['bbox'])

if segm_json_results is not None:
result_files['segm'] = f'{outfile_prefix}.segm.json'
dump(segm_json_results, result_files['segm'])

return result_files

def gt_to_coco_json(self, gt_dicts: Sequence[dict],
outfile_prefix: str) -> str:
"""Convert ground truth to coco format json file.
Args:
gt_dicts (Sequence[dict]): Ground truth of the dataset.
outfile_prefix (str): The filename prefix of the json files. If the
prefix is "somepath/xxx", the json file will be named
"somepath/xxx.gt.json".
Returns:
str: The filename of the json file.
"""
categories = [
dict(id=id, name=name)
for id, name in enumerate(self.dataset_meta['CLASSES'])
]
image_infos = []
annotations = []

for idx, gt_dict in enumerate(gt_dicts):
img_id = gt_dict.get('img_id', idx)
image_info = dict(
id=img_id,
width=gt_dict['width'],
height=gt_dict['height'],
file_name='')
image_infos.append(image_info)
for ann in gt_dict['anns']:
label = ann['bbox_label']
bbox = ann['bbox']
coco_bbox = qbox2rbox_list(bbox)

annotation = dict(
id=len(annotations) +
1, # coco api requires id starts with 1
image_id=img_id,
bbox=coco_bbox,
iscrowd=ann.get('ignore_flag', 0),
category_id=int(label),
area=coco_bbox[2] * coco_bbox[3])
if ann.get('mask', None):
mask = ann['mask']
# area = mask_util.area(mask)
if isinstance(mask, dict) and isinstance(
mask['counts'], bytes):
mask['counts'] = mask['counts'].decode()
annotation['segmentation'] = mask
# annotation['area'] = float(area)
annotations.append(annotation)

info = dict(
date_created=str(datetime.datetime.now()),
description='Coco json file converted by mmdet CocoMetric.')
coco_json = dict(
info=info,
images=image_infos,
categories=categories,
licenses=None,
)
if len(annotations) > 0:
coco_json['annotations'] = annotations
converted_json_path = f'{outfile_prefix}.gt.json'
dump(coco_json, converted_json_path)
return converted_json_path

def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()

# split gt and prediction list
gts, preds = zip(*results)

tmp_dir = None
if self.outfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
outfile_prefix = osp.join(tmp_dir.name, 'results')
else:
outfile_prefix = self.outfile_prefix

if self._coco_api is None:
# use converted gt json file to initialize coco api
logger.info('Converting ground truth to coco format...')
coco_json_path = self.gt_to_coco_json(
gt_dicts=gts, outfile_prefix=outfile_prefix)
self._coco_api = COCO(coco_json_path)

# handle lazy init
if self.cat_ids is None:
self.cat_ids = self._coco_api.get_cat_ids(
cat_names=self.dataset_meta['CLASSES'])
if self.img_ids is None:
self.img_ids = self._coco_api.get_img_ids()

# convert predictions to coco format and dump to json file
result_files = self.results2json(preds, outfile_prefix)

eval_results = OrderedDict()
if self.format_only:
logger.info('results are saved in '
f'{osp.dirname(outfile_prefix)}')
return eval_results

for metric in self.metrics:
logger.info(f'Evaluating {metric}...')

# TODO: May refactor fast_eval_recall to an independent metric?
# fast eval recall
if metric == 'proposal_fast':
ar = self.fast_eval_recall(
preds, self.proposal_nums, self.iou_thrs, logger=logger)
log_msg = []
for i, num in enumerate(self.proposal_nums):
eval_results[f'AR@{num}'] = ar[i]
log_msg.append(f'\nAR@{num}\t{ar[i]:.4f}')
log_msg = ''.join(log_msg)
logger.info(log_msg)
continue

# evaluate proposal, bbox and segm
iou_type = 'bbox' if metric == 'proposal' else metric
if metric not in result_files:
raise KeyError(f'{metric} is not in results')
try:
predictions = load(result_files[metric])
if iou_type == 'segm':
# Refer to https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/coco.py#L331 # noqa
# When evaluating mask AP, if the results contain bbox,
# cocoapi will use the box area instead of the mask area
# for calculating the instance area. Though the overall AP
# is not affected, this leads to different
# small/medium/large mask AP results.
for x in predictions:
x.pop('bbox')
coco_dt = self._coco_api.loadRes(predictions)

except IndexError:
logger.error(
'The testing results of the whole dataset is empty.')
break

coco_eval = RotatedCocoEval(self._coco_api, coco_dt, iou_type)

coco_eval.params.catIds = self.cat_ids
coco_eval.params.imgIds = self.img_ids
coco_eval.params.maxDets = list(self.proposal_nums)
coco_eval.params.iouThrs = self.iou_thrs

# mapping of cocoEval.stats
coco_metric_names = {
'mAP': 0,
'mAP_50': 1,
'mAP_75': 2,
'mAP_s': 3,
'mAP_m': 4,
'mAP_l': 5,
'AR@100': 6,
'AR@300': 7,
'AR@1000': 8,
'AR_s@1000': 9,
'AR_m@1000': 10,
'AR_l@1000': 11
}
metric_items = self.metric_items
if metric_items is not None:
for metric_item in metric_items:
if metric_item not in coco_metric_names:
raise KeyError(
f'metric item "{metric_item}" is not supported')

if metric == 'proposal':
coco_eval.params.useCats = 0
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if metric_items is None:
metric_items = [
'AR@100', 'AR@300', 'AR@1000', 'AR_s@1000',
'AR_m@1000', 'AR_l@1000'
]

for item in metric_items:
val = float(
f'{coco_eval.stats[coco_metric_names[item]]:.3f}')
eval_results[item] = val
else:
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
if self.classwise: # Compute per-category AP
# Compute per-category AP
# from https://github.com/facebookresearch/detectron2/
precisions = coco_eval.eval['precision']
# precision: (iou, recall, cls, area range, max dets)
assert len(self.cat_ids) == precisions.shape[2]

results_per_category = []
for idx, cat_id in enumerate(self.cat_ids):
# area range index 0: all area ranges
# max dets index -1: typically 100 per image
nm = self._coco_api.loadCats(cat_id)[0]
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
if precision.size:
ap = np.mean(precision)
else:
ap = float('nan')
results_per_category.append(
(f'{nm["name"]}', f'{round(ap, 3)}'))
eval_results[f'{nm["name"]}_precision'] = round(ap, 3)

num_columns = min(6, len(results_per_category) * 2)
results_flatten = list(
itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (num_columns // 2)
results_2d = itertools.zip_longest(*[
results_flatten[i::num_columns]
for i in range(num_columns)
])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
logger.info('\n' + table.table)

if metric_items is None:
metric_items = [
'mAP', 'mAP_50', 'mAP_75', 'mAP_s', 'mAP_m', 'mAP_l'
]

for metric_item in metric_items:
key = f'{metric}_{metric_item}'
val = coco_eval.stats[coco_metric_names[metric_item]]
eval_results[key] = float(f'{round(val, 3)}')

if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results
Loading

0 comments on commit 9c1bb33

Please sign in to comment.