Skip to content

LambdaColdStorage/openmm_benchmark

Repository files navigation

OpenMM Benchmark

Goal

This repo benchmarks the performance of serveral molecular simulation task on different GPUs. We use the benchmark script of the OpenMM library and run simulation with single/mixed/double precisions for eight different tasks, with both CUDA and OpenCL backend.

Results can be found in these CSV files:

Installation

Prerequisites

CUDA 10.0 (You can get it via installing Lambda Stack)

Anaconda

cd && wget https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh && bash Anaconda3-2020.02-Linux-x86_64.sh

# Type yes to accept th license terms

# Press Enter to confirm the installation location /home/$USERNAME/anaconda3

# Type no when asked "Do you wish the installer to initialize Anaconda3 by running conda init?"

# Close the current terminal and open a new one
conda config --set auto_activate_base false && rm Anaconda3-2020.02-Linux-x86_64.sh

Create Conda Virtual Environment

In a new terminal:

conda create --name venv_openmm
conda activate venv_openmm
conda install -c omnia/label/cuda100 -c conda-forge openmm
conda install -c eumetsat expect
conda install pandas=1.0.3

Run Benchmark

git clone https://github.com/lambdal/openmm_benchmark.git

cd openmm_benchmark

conda activate venv_openmm

./benchmark.sh <GPU_NAME> <GPU_INDEX>

# Example
./benchmark.sh QuadroRTX8000 0

Compile Results

python compile_results.py

Releases

No releases published

Packages

No packages published