Replies: 6 comments 5 replies
-
Tried the new version on playchess . Suddenly I lost 3 games in a row. Had to go back to rc1. |
Beta Was this translation helpful? Give feedback.
-
It is very pity but LC0 ver.0.29.-0.30.0-0.31.0 cuda are not applicable to use more than two GPU. |
Beta Was this translation helpful? Give feedback.
-
Thanks for your proposal I will try it and I will report you the result.
Note
I did not know about this combinations of the backends and
I think maybe the structure of nets also play a rule in the
effectiveness of using more GPUs. What is your opinion about it?
Best regards
Robert
2023-06-17 08:02 időpontban borg323 ezt írta:
I see. Scaling to more than two gpus is not efficient, and using
different gpus is also complicating things. For your specific use case
I expect you can demux the two RTX3080 into one and multiplex with the
two RTX4090. So something like --minibatch=128 --backend=multiplexing
--backend-opts="(gpu=0),(gpu=1),demux((gpu=2),(gpu=3))" --threads=4
might work, assuming the RTX 4090 are gpus 0 and 1 and the RTX 3090 are
gpus 2 and 3.
--
Reply to this email directly, view it on GitHub [1], or unsubscribe
[2].
You are receiving this because you commented.Message ID:
***@***.***>
Links:
------
[1]
#1896 (reply in thread)
[2]
https://github.com/notifications/unsubscribe-auth/BAUMIMN3UMVS5AUZKLDFMHLXLXBG5ANCNFSM6AAAAAAZH3UKNM
--=_d2478fa91bf66d2b1232461d9d60ef43
Content-Type: multipart/related;
boundary="=_b497dbaa2d284412b8cf99fb4406ce40"
--=_b497dbaa2d284412b8cf99fb4406ce40
Content-Transfer-Encoding: quoted-printable
Content-Type: text/html; charset=UTF-8
<html><head><meta http-equiv=3D"Content-Type" content=3D"text/html; charset=
=3DUTF-8" /></head><body style=3D'font-size: 10pt; font-family: Verdana,Gen=
eva,sans-serif'>
<p>Thanks for your proposal I will try it and I will report you the result=
=2E</p>
<p>Note</p>
<p>I did not know about this combinations of the backends and</p>
<p>I think maybe the structure of nets also play a rule in the</p>
<p>effectiveness of using more GPUs. What is your opinion about it?</p>
<p>Best regards</p>
<p>Robert</p>
<p><br /></p>
<p id=3D"reply-intro">2023-06-17 08:02 id=C5=91pontban borg323 ezt í=
rta:</p>
<blockquote type=3D"cite" style=3D"padding: 0 0.4em; border-left: #1010ff 2=
px solid; margin: 0">
<div id=3D"replybody1">
<p><br /></p>
<p dir=3D"auto">I see. Scaling to more than two gpus is not efficient, and =
using different gpus is also complicating things. For your specific use cas=
e I expect you can demux the two RTX3080 into one and multiplex with the tw=
o RTX4090. So something like <code class=3D"v1notranslate">--minibatch=3D12=
8 --backend=3Dmultiplexing --backend-opts=3D"(gpu=3D0),(gpu=3D1),demux((gpu=
=3D2),(gpu=3D3))" --threads=3D4</code> might work, assuming the RTX 4090 ar=
e gpus 0 and 1 and the RTX 3090 are gpus 2 and 3.</p>
<p style=3D"font-size: small; -webkit-text-size-adjust: none; color: #666;"=
—<br />Reply to this email directly, <a href=3D"https://github.com/L=
eelaChessZero/lc0/discussions/1896#discussioncomment-6204817" target=3D"_bl=
ank" rel=3D"noopener noreferrer">view it on GitHub</a>, or <a href=3D"https=
://github.com/notifications/unsubscribe-auth/BAUMIMN3UMVS5AUZKLDFMHLXLXBG5A=
NCNFSM6AAAAAAZH3UKNM" target=3D"_blank" rel=3D"noopener noreferrer">unsubsc=
ribe</a>.<br />You are receiving this because you commented.<img src=3D"cid=
***@***.***" width=3D"1" height=3D"1" /><span s=
tyle=3D"color: transparent; font-size: 0; display: none; visibility: hidden=
; overflow: hidden; opacity: 0; width: 0px; height: 0px; max-width: 0; max-=
height: 0; mso-hide: all;">Message ID: <span><LeelaChessZero/lc0/repo-di=
scussions/1896/comments/6204817</span><span>@</span><span>github</span><spa=
n>.</span><span>com></span></span></p>
</div>
</blockquote>
<p><br /></p>
</body></html>
…--=_b497dbaa2d284412b8cf99fb4406ce40
Content-Transfer-Encoding: base64
Content-ID: ***@***.***>
Content-Type: image/gif;
name=blocked.gif
Content-Disposition: inline;
filename=blocked.gif;
size=118
R0lGODlhZAAyAIAAAPrOzgAAACH5BAAAAAAALAAAAABkADIAAAJNhI+py+0Po5y02ouz3rz7D4bi
SJbmiabqyrbuC8fyTNf2jef6zvf+DwwKh8Si8YhMKpfMpvMJjUqn1Kr1is1qt9yu9wsOi8fksvls
KwAAOw==
--=_b497dbaa2d284412b8cf99fb4406ce40--
--=_d2478fa91bf66d2b1232461d9d60ef43--
|
Beta Was this translation helpful? Give feedback.
-
I have used the t1-768x15x24h.... net also and the result was the same.
Robert
2023-06-18 03:12 időpontban borg323 ezt írta:
The multi-gpu scaling is better if you use large, slow nets. With the
gpus you have the best option looks to be
t1-768x15x24h-swa-4000000.pb.gz [1].
--
Reply to this email directly, view it on GitHub [2], or unsubscribe
[3].
You are receiving this because you commented.Message ID:
***@***.***>
Links:
------
[1]
https://storage.lczero.org/files/networks-contrib/t1-768x15x24h-swa-4000000.pb.gz
[2]
#1896 (reply in thread)
[3]
https://github.com/notifications/unsubscribe-auth/BAUMIMIV4TLRVQKMEULH63TXL3IA7ANCNFSM6AAAAAAZH3UKNM
--=_6149a17e3d56b5e48624996c84164432
Content-Type: multipart/related;
boundary="=_a17da27cd216b5011a122c00fe0fcb94"
--=_a17da27cd216b5011a122c00fe0fcb94
Content-Transfer-Encoding: quoted-printable
Content-Type: text/html; charset=UTF-8
<html><head><meta http-equiv=3D"Content-Type" content=3D"text/html; charset=
=3DUTF-8" /></head><body style=3D'font-size: 10pt; font-family: Verdana,Gen=
eva,sans-serif'>
<p>I have used the t1-768x15x24h.... net also and the result was the same=
=2E</p>
<p>Robert</p>
<p><br /></p>
<p id=3D"reply-intro">2023-06-18 03:12 id=C5=91pontban borg323 ezt í=
rta:</p>
<blockquote type=3D"cite" style=3D"padding: 0 0.4em; border-left: #1010ff 2=
px solid; margin: 0">
<div id=3D"replybody1">
<p><br /></p>
<p dir=3D"auto">The multi-gpu scaling is better if you use large, slow nets=
=2E With the gpus you have the best option looks to be <a href=3D"https://s=
torage.lczero.org/files/networks-contrib/t1-768x15x24h-swa-4000000.pb.gz" t=
arget=3D"_blank" rel=3D"noopener noreferrer">t1-768x15x24h-swa-4000000.pb=
=2Egz</a>.</p>
<p style=3D"font-size: small; -webkit-text-size-adjust: none; color: #666;"=
—<br />Reply to this email directly, <a href=3D"https://github.com/L=
eelaChessZero/lc0/discussions/1896#discussioncomment-6208620" target=3D"_bl=
ank" rel=3D"noopener noreferrer">view it on GitHub</a>, or <a href=3D"https=
://github.com/notifications/unsubscribe-auth/BAUMIMIV4TLRVQKMEULH63TXL3IA7A=
NCNFSM6AAAAAAZH3UKNM" target=3D"_blank" rel=3D"noopener noreferrer">unsubsc=
ribe</a>.<br />You are receiving this because you commented.<img src=3D"cid=
***@***.***" width=3D"1" height=3D"1" /><span s=
tyle=3D"color: transparent; font-size: 0; display: none; visibility: hidden=
; overflow: hidden; opacity: 0; width: 0px; height: 0px; max-width: 0; max-=
height: 0; mso-hide: all;">Message ID: <span><LeelaChessZero/lc0/repo-di=
scussions/1896/comments/6208620</span><span>@</span><span>github</span><spa=
n>.</span><span>com></span></span></p>
</div>
</blockquote>
<p><br /></p>
</body></html>
…--=_a17da27cd216b5011a122c00fe0fcb94
Content-Transfer-Encoding: base64
Content-ID: ***@***.***>
Content-Type: image/gif;
name=blocked.gif
Content-Disposition: inline;
filename=blocked.gif;
size=118
R0lGODlhZAAyAIAAAPrOzgAAACH5BAAAAAAALAAAAABkADIAAAJNhI+py+0Po5y02ouz3rz7D4bi
SJbmiabqyrbuC8fyTNf2jef6zvf+DwwKh8Si8YhMKpfMpvMJjUqn1Kr1is1qt9yu9wsOi8fksvls
KwAAOw==
--=_a17da27cd216b5011a122c00fe0fcb94--
--=_6149a17e3d56b5e48624996c84164432--
|
Beta Was this translation helpful? Give feedback.
-
I use Chessbase GUI and it can not use lc0.config file.
I can only use the "Engine parameters" panel for setting up an
engine.
I experienced the next backend was good for my GPUs:
Backend:
Multiplexing
BackendOptions:
backend=cuda-fp16,(gpu=0),(gpu=1),demux(gpu=2),(gpu=3)
In the parts.zip file I send you my test results with different Lc0
params.
Obviously using 2 x RTX4090 with DEMUX backend + Net of
Bt2 smolgen and ~TCEC params the chess power of Leela is about the
same as Stockfish dev (Hash=2048 MB, Cores 16, Clock ~3000MHz),
even in the case of fast game (TC = 1min + 2sec/move)!
I think if you can enhance the effectiveness of using multi GPUs,
Leela will be the No.1!
Greetings
Robert
2023-06-17 08:02 időpontban borg323 ezt írta:
I see. Scaling to more than two gpus is not efficient, and using
different gpus is also complicating things. For your specific use case
I expect you can demux the two RTX3080 into one and multiplex with the
two RTX4090. So something like --minibatch=128 --backend=multiplexing
--backend-opts="(gpu=0),(gpu=1),demux((gpu=2),(gpu=3))" --threads=4
might work, assuming the RTX 4090 are gpus 0 and 1 and the RTX 3090 are
gpus 2 and 3.
--
Reply to this email directly, view it on GitHub [1], or unsubscribe
[2].
You are receiving this because you commented.Message ID:
***@***.***>
Links:
------
[1]
#1896 (reply in thread)
[2]
https://github.com/notifications/unsubscribe-auth/BAUMIMN3UMVS5AUZKLDFMHLXLXBG5ANCNFSM6AAAAAAZH3UKNM
--=_256fec1d58454f1d97ec51bdb581c77e
Content-Type: multipart/related;
boundary="=_1e69cbf88506f39cbf5c46133de35efd"
--=_1e69cbf88506f39cbf5c46133de35efd
Content-Transfer-Encoding: quoted-printable
Content-Type: text/html; charset=UTF-8
<html><head><meta http-equiv=3D"Content-Type" content=3D"text/html; charset=
=3DUTF-8" /></head><body style=3D'font-size: 10pt; font-family: Verdana,Gen=
eva,sans-serif'>
<p>I use Chessbase GUI and it can not use lc0.config file.</p>
<p>I can only use the "Engine parameters" panel for setting up an</p>
<p>engine.</p>
<p>I experienced the next backend was good for my GPUs:</p>
<p>Backend:</p>
<p>Multiplexing</p>
<p>BackendOptions:</p>
<p>backend=3Dcuda-fp16,(gpu=3D0),(gpu=3D1),demux(gpu=3D2),(gpu=3D3)</p>
<p>In the parts.zip file I send you my test results with different Lc0</p>
<p>params.</p>
<p>Obviously using 2 x RTX4090 with DEMUX backend + Net of</p>
<p>Bt2 smolgen and ~TCEC params the chess power of Leela is about the</p>
<p>same as Stockfish dev (Hash=3D2048 MB, Cores 16, Clock ~3000MHz), <=
/p>
<p>even in the case of fast game (TC =3D 1min + 2sec/move)!</p>
<p>I think if you can enhance the effectiveness of using multi GPUs,</p>
<p>Leela will be the No.1!</p>
<p>Greetings</p>
<p>Robert</p>
<p><br /></p>
<p><br /></p>
<p><br /></p>
<p id=3D"reply-intro">2023-06-17 08:02 id=C5=91pontban borg323 ezt í=
rta:</p>
<blockquote type=3D"cite" style=3D"padding: 0 0.4em; border-left: #1010ff 2=
px solid; margin: 0">
<div id=3D"replybody1">
<p><br /></p>
<p dir=3D"auto">I see. Scaling to more than two gpus is not efficient, and =
using different gpus is also complicating things. For your specific use cas=
e I expect you can demux the two RTX3080 into one and multiplex with the tw=
o RTX4090. So something like <code class=3D"v1notranslate">--minibatch=3D12=
8 --backend=3Dmultiplexing --backend-opts=3D"(gpu=3D0),(gpu=3D1),demux((gpu=
=3D2),(gpu=3D3))" --threads=3D4</code> might work, assuming the RTX 4090 ar=
e gpus 0 and 1 and the RTX 3090 are gpus 2 and 3.</p>
<p style=3D"font-size: small; -webkit-text-size-adjust: none; color: #666;"=
—<br />Reply to this email directly, <a href=3D"https://github.com/L=
eelaChessZero/lc0/discussions/1896#discussioncomment-6204817" target=3D"_bl=
ank" rel=3D"noopener noreferrer">view it on GitHub</a>, or <a href=3D"https=
://github.com/notifications/unsubscribe-auth/BAUMIMN3UMVS5AUZKLDFMHLXLXBG5A=
NCNFSM6AAAAAAZH3UKNM" target=3D"_blank" rel=3D"noopener noreferrer">unsubsc=
ribe</a>.<br />You are receiving this because you commented.<img src=3D"cid=
***@***.***" width=3D"1" height=3D"1" /><span s=
tyle=3D"color: transparent; font-size: 0; display: none; visibility: hidden=
; overflow: hidden; opacity: 0; width: 0px; height: 0px; max-width: 0; max-=
height: 0; mso-hide: all;">Message ID: <span><LeelaChessZero/lc0/repo-di=
scussions/1896/comments/6204817</span><span>@</span><span>github</span><spa=
n>.</span><span>com></span></span></p>
</div>
</blockquote>
<p><br /></p>
</body></html>
…--=_1e69cbf88506f39cbf5c46133de35efd
Content-Transfer-Encoding: base64
Content-ID: ***@***.***>
Content-Type: image/gif;
name=blocked.gif
Content-Disposition: inline;
filename=blocked.gif;
size=118
R0lGODlhZAAyAIAAAPrOzgAAACH5BAAAAAAALAAAAABkADIAAAJNhI+py+0Po5y02ouz3rz7D4bi
SJbmiabqyrbuC8fyTNf2jef6zvf+DwwKh8Si8YhMKpfMpvMJjUqn1Kr1is1qt9yu9wsOi8fksvls
KwAAOw==
--=_1e69cbf88506f39cbf5c46133de35efd--
--=_256fec1d58454f1d97ec51bdb581c77e--
--=_931149ac781667890f5cb4a71cfb9cda
Content-Transfer-Encoding: base64
Content-Type: application/zip;
name=Parts.zip
Content-Disposition: attachment;
filename=Parts.zip;
size=235777
UEsDBBQAAgAAAA8Y01YAAAAAAAAAAAAAAAAGAAAAUGFydDEvUEsDBBQAAgAIAJcEzVZqjvPPoAMA
AOgGAAAwAAAAUGFydDEvREVNVVhfTGMwIHYwLjMxLjAtZGV2K2dpdC43ZTYwZDI0OS5jYnBhcmFt
fVTdcttEFJZbaNW0BAgtVNBhyh0dGo3kH6UBykXceGDGjkXkSW56s14dS4slrWd35aBc8RK8E4/B
m8DZlWzL0KlnbK++8+ns+fnOefTw4NCy7v39zzPLssbUe7723J7vescxrL9LmHJPIPDibv/UfoCE
+/g9I3QJRex8g+d5fX5Ny5gcL1Z+8PLbZFW+9l7U//6Lw90L05VivJDOPYS6brfvBx/iaRiWVDmP
8NQfBMGp65nPg43ljEhwNK/nnp70Hm7gEaGKCxsfrSONEZrCz0wiVo2hSFTqHCCcUc+lvFiwRD8N
zWnEMnDu4qPnenaNKshXyvj6rAWEIOQKqGJrMDadyRtBbiLKBZxlmJOBP23D09WKF1DsnG0tEYth
xif8Xc6uU6ZqWOc3WpWREkRBUjm2iXPwqud5A7u2XZGsBLvTkJucMalsG80vccaKZMIKlpf5NRdL
x2o6N+YmffvPu3XZJuT3Ic8yJrEv52uMW9p/vOr8z3SFv2hKgzvWs3eaIkr0lecoCh2F73YHuolf
v48c8hsQtvb3XlqkiFAm3c83tIKWQmCwERCBbRfSXNp1+0Y5T2vatFTTxVTEIM7XJJONXp43ZUNC
KGABiqa2hc4/0hgWbE4Qidgt2Nrl0wbFMqIYZkQuQ8EpSIlxmZCOWgRGlwjrctuPEX7SMm1f2lq/
2lkvISd4woK0PPzVSETrZboGkQKJJ7KRQz0hXzRmOYaFwqJIRYpmLDa8Xh/bcNTmYd7niwWK2tED
duy5waDrNzXbcH4tSYzyY7TlzG+IT9pE3SGI96/0uieed7jHyvgK9iLfi2iWCpApz2LbOvY7ujcX
F2aadRf2XtPjdMFjkNiLCHCs4zHLmep09HX77e6YhiIvvBryEscZNXLfpNH3At/XQxLyjNFqhoMO
mGwp6vnTa+KS5MbxZG4gXSgzpbOqycN3e71NHlGO8gxFqRvY2klf/sfU9PpMywukHTfaiTCIeCYA
tlWos4mw+ssKxykhOciOkUJU3VZJNSJShRmpnI8Ryr9/exNnwQ/4H6vb4GDLColK7Q8arWvdalFh
EYxodQ/1fSSuF8WuA3eaNVFb60WdQUJoZfywHCakIAmIjqX39eyGj/A1vcYwxk8QuQIx5xJ0c3Fu
1b5gddWv34yHONZzrS9cORnfbDjDeFwztMNL3H+XOKA453RT9Z16kKTbPJ3/ZvYzU5WjS/QjKRWP
maR4v/hJx3wNLEmV1EvvX1BLAwQUAAIACABKFNNWpw/FKBHcAgA3fwkAVgAAAFBhcnQxL0RFTVVY
X0xjMC12MC4zMS4wK05ldC1CdDItNzY4eDE1c21vbGdlbl9TRitOTlVFIFBPIDIzMDYxMWF2eDJf
cmVzMjAwLDUtMTk1LjUucGduzL1rjyTLcSX4vYH+DwV+2Rp03erwZ0QsISyUI82X2k0pa2ahBYT9
kO8SxBUFiqNNDcH/vmF2jpl7ZFXzcXlvzwoQ2czyiPC3Hzc7duwf//bfz//y24dfHH59eHrY/Oqf
fvs//tfwv3yJv/jF//350z/+13/67fnhF/+b/vtv9vLvOMT0PNTnkPTH11//9385Pfwi6P/4hzct
/r8fh4d/H55TeB5+OJ3//cv1n377PJ7rcIp51nKbX+2P//zwi//6X75st//n3z78/d89xDTUgJe8
nv/tv/9qqU/4Gn9Y/l9/+9v//HcPv/jrgqf/+l/+5de/3f/21795+MXwXIdfDs9j1j/8/a/+4z8v
1ZFnY5VfPn/63V//H3/z8Pof/+P8Lw//7e035/3pN//0r/96/s3D37/+3UOZS/mH/+sh1B/+869/
c/63B/m/f/irUJ7nh3/91X/88iGk6Z+3X/9t+cdTTePnT/9t89dLoc1flfKcWGJ+qmFEofGpzuEp
h+EB5X7/EJ4fTvlhe6kP8fnhmB+O5SEtP5WHQ3nIz58/HW/LP/b1oTw/HG7Lf1/rQ31+2B7Tw0b+
5/j8cM7LPy/hYXp+eJH/PtWHeSlxWUpcx4cwPD9c08Pf/fB3DyEs73u5xoft4TQ+/G7z69++Pfxq
/2+/fTj8+tf//PD//Prfz0t1llrs88PvpM++hvgQsv72/PywO1T5ecxfU36I8/JzWl73uk8Pv3vc
HeN/elgeifLIoH9anni9HCb542GUP47xa5wf4vLHvLzsGPUb89cwPoz62/Pytt1h+fTj9jzJA2X+
GqcH+f7S9u1peeDx9RTkL7l+jUUfK/Kdo9Y3z/L+tPwo/bN02u8+f3rc7rViafwaK/+2PLA9F31i
aUrSX5devOhLpGDSFoxa8JT01/Q1xaXg509h6eTdDR9M+WvM+vik/cOf4/LWoD/LKFjZJGUH/VHe
e9TqLYWXNxcpHJdhej0HfcH0NcaHqr9J2cvtrO8ISXpeyi5z5oBvJanuqD9J/21vGLsQ7bXLcL7y
+RjZtqjj+SoTi2UnLZu07Og1i0FLJ5a2N2dtXVxG8fU4shZh0qIyig8XvLZ8zVELlqVim7N2ZAxS
Mgz6q7zVq5B1IKIM3e1Ureysb62owIl9FoJVYZSezO3Fg/62FN5cJp0tJ51IYfia0XHL6L3utZOD
zrywLFj9WT6wrKb2zDDbR2appj9TZELGGQ/IR5aVaOWrTpE08COPrwfM/KVyS8cvz6Xhgw9NX7NO
22Uj9A8VaU2Wl4X3X1oe0PFKMrbLJ/SJ/DVU/qgPnCb5WcriZxnb/dJa9Pby9qI/PmMrkaKjFJ2W
X2Vgb28jB2bppUF/fOaq0qI1o61FXssqJKmClC1YOjqKQ/2aR217N7Ty2qJFMbST/i5juxSvUeu2
jO3r29FrkWRBJB3c1zPenKXjQlh+lmE9JKtEXBbEUjUM6vmEzkZf56+lyBaUdFAneyLrFzGo7Lil
ZJCSeUAno+e0iVl/1Zdb2WVApGxgPR5fLrrtyKjoqs+BlZnYzCw9KI/oGHqnZFnLGUM4nayZJWnR
1A13kB4ZlmbmdNclUcsuY7jUoXVe1t+0fWnVH5geeRnHzTFwfekunvVXa6U/kWQ45QvLcL7JZr3M
Km3q0jVBH8KQ2mIdwteEB2RAj95SfADjyYYOX5OeD1mG86jb/fGIlwd5eZHm6qjKuYYn2DXLcMq5
9rvHzd5WY9DVmzmowcpr95SBvb6cEPbEKHVK+jdt9NkeyVqpsoztZm8rZZm9QX97ln7WHfPx9Rq+
6JsGTp0SdYf8ItU6FmuHbstFh/jlOtk3tIuKjvD0Ba/DkSqP6BAVHeiXN285Hsk2KfwbUR7An6Qh
S630fS9vE2s362Rd8MlS9W6ySp9lGZWCYb9e5Ek8oZtzWYb8RfZxedsZz1SZXFH/pgf+2Z+Z0Aej
T8Rlsi2wB79pWVQMhXVVFkEwZxnG5TOcbbrTlend23X1lJltkBqxFfHryD/5R/SJsFRUwEwdbK5Y
G+JX7a869P1lX1mGuYbWhvhVx6+G+y6atKI13rdgOat0p6zxvglhKLLt1HQ/Dss60Pqkvpv+5jf7
//dhfzye//W35xNKTVVqRwAsMPYffwqMHnuM/jH2JjD/owD+z8PoU1oweil3GD0O6cdi9GXFRCDw
uEDuQgQe8lONw5OMyPxgYH0ByYVgfcgsN4xP0wLk/n+P06cFFg5ycK9geimymkMhTN9hP8VeN42C
exXZJ8PPC0rPCq31aC5A6ZtrEdxx0I1luQ8sO3kSVKJo/eFNP5Rm2W8KUDphXk3ygWj4XNHuUnIi
oBOAvlk6U7c5VKkGAaxa3dquDgt0WpD+oEh/dPixVCTqFkaMDnysmHVB7wpXBKZvbjglymQoX3eR
F/4c/UogWOAN230epBoCH4jTL9XK6nsVpStE1veiGoTpik8flxuDQr6ReD/KWL7eLqMue2mm7osR
R8ftMloriyL+2N0j5q+pKrbnYWHAPEvFAcyXwiftk1h0SA2t7w4GzCMAa9aiOPF2p6wHVYrsGMD2
LW8Jg9w+RkXoD7tz0XoHHfuG2/Xk0soMVpkqh52g3t25fiEiyLp/Ar9vr4VvWhDlTPB+OOFSUaXb
B8XiGNPbBUetonQid/sxTNKJwXH7ZbKileD8QepAMKOvDobZl1OQuBiTVsA6GrkcuJVnzgJDRgPr
3tL2SLD342YxKJANd2/XwVeEfkzdy2e5awWBp9GvAqh7IiJf3p0InAGcgNLRezhvK0D6W3LMnOYG
0l95B5SyALYFUE2PYP08IforRnwo7OQFjctOUfRCH6wzRn1Ax3CHmT9EYiUB6W83Vq3IHS4YSF9m
MW7g8ne+ajn+E9H6DVvCoLdJQPjn7l3x62wwfau/yU5hL1LsExywn3EyhwUqVOD17VsykKRHJNH6
7WAlx4cic03x+psO/jXbq3XKAq/rkntcZgD/NhKdA90uW5fXZ6mtvpCDGrvHwlcg7MTb7uP24t/S
/iKCv9QVTLPHFN/l9WPaesB5nZ6Pr5d9XT0l17Jr/rKcml3LcDMo/US18rJ43zJWgZUfZ+L81SqQ
zktE81c8cegqFg3Uty+g/GRfkJH0J2rhHzs0bHWSbfmUP/pAW8nyssuqwwTab2HLkfcHwn3t4b3d
M1Ay6G0PVeK23XB1mwAc+kRAfxrX8yUR6utNYPpoDBXWy032cZmY1vCBgH91DUBxNaxYvd7u6pX9
FrDMsHH1GRl0Pcq9cmw+FnvdZ5kPr3ubztVAPS8ptkd57TD0csx3i6AarN+eil6KpW6lw/X70VtD
TI9aLa/3+5HBfR2WrrwsojKvRrA0NI9mL+O4arcA+qsVL7qNVhvwUVt8Hvu6K5y/+g4x8Td5IO6T
dkTcZ/9CBKq/JL8VLKs96I/PbuhJdw8k7R4dcdsjMi4OWOxhzz1tP62ey3IMJ13t3lnYICv29j2u
3GH1lA48X9jGMPNv8ljeF19b8mvtBsU+M/Mv9hkudzwwtit5Xe1edWxbHrGcPzTxxt/6Lemv6Oq6
qtGsk94GfeBvrYdXr/78aRxowFl6ynp40rEfeX/Xp8J6XMZAg2H3lG74ywtD1792k7fH1Eija2R7
8v7S5o+x2x6XhW/bsC7WMTUzmJ1FIyaAWs3vRn/M3fW/VRC2pbEt/O4DpVXssj4cx7Kq2HVdsdoO
o8I7cNbTbST6Dn03cOGMuucXPVVe2+cG/dy4tk7gM5Ofr115BSAjt/w2O/CETAPYj1tL5s5oelel
aSBulR7zkwufmAbv6dbHU0AbdCjtuo2RmYJvd32VpvhBI2rkn6wRXflkX9DDyZsd+Ef7RvdE7hud
K3/rXm2zfirE0X3ldZ1P5Q90Uu0hUbXfnt17swzbqvyoG/AX3fbtM3Xin7pjkbNpEmzugLtVaVo3
QQdz0s19MhtI0U1nmtdv1eGbB/FnEGf7njAP9y+VH4NXeHtan31zO8d9UJdNaI7SJeWuiXjio0Gd
kyK0LyvEoRM06R/1ibLqSu2vGUOLyeNPzfzTs17z1x8qZp1q5TFic+GZFlblqzWdzWMjaodf38Z+
7c+jjZbNffx412jZE+fJBkvQ55e2uuSJqf9CXTV6fv+F5WXzB/0ahsHq380c+fVd9TlyYVDYVhTa
dltexJ90ERQcybGtAn3Q0ZteJgS8f2BUAzT5qY1q6WdwfP8w9Aa1+oFBLf5y+US6d3qH8qOd3uF5
hJVsCjCSmX3s86eHzV8t13Ha28L4FKvZ0Z6GMj3lBf78UUvaWSxpYjL7/OmkhjSxmJ2/ZQFTI5Lu
apNcF0OVn+QSuQx/0JtrlguhXFGzAtVJDdCD/CQmBt0r5VwMcvylQWwHE3fKxw3217Eub57kdzVj
6S6C4lhmth1b8UgTt851MeUtn52LlBZ/OSx8v3scfhi09LC8PAvkDTrfN2LsC2r/jWrPC2bi05KD
/iKmAKn4QZfcnFmT4BDV3l5nebtZBbcKnbd7NLeKZSnCT29Hwygmcn2Vbmcb3ke7R5I577cwho8j
nSwh+4XscSdgG+UDLYDLuwJcLeilOsObQ+sg7JWzPjDSOIgqVf3AYDZBIMY5wc2/DMQoRr6Tnhpg
HhSzCe5u7Mskb80wCO7UMI/LUU10dsAoeDA4ftBNd9L5MMM2KHeLx0OiCRTujkBMogh0g3vYmMVI
mGEk3F5OQbaoDbbGsciDyWyF9F/NOg4B5kAA/6WoGY9gItxeiEdmrVOAjbCfdFOgNw12wu0FXsll
6saJFsGHw2pqyEKAiU+HGtBjeT/YFmIrxHVhsv6HgVBvajr71e75+ZNYCHWSW1Xmif4tWAnlEoeb
YxDTUyzu4terxFZO3iDmPK3/8j4dZrF2BDWJ6vxVO6FcL4IQI4IeEDQSStcE0jBgDlzWUMQaTQPd
YDQSqp1k+6aTMxbrGvEfvUVDAeG5RE7NSJrGGfh5d9RGCIWl0JEvniL5fNGZlMxeuDvqlLho+ao2
5gCb4faoFApdUzcxaYTneTQTnY41CgSdScnsh1v9MarRTZtJy+FhpOFCm7RMMH5JVrRcuuLzZHSF
ZAyOJD+HkXbrpLfNUX6TgcOYwoa4E0d1VFMzbJBFDXH641xItTA/v74hR7Jv1M/PzWNZIMtNNZFx
kM2MuD3fLlrDIVutl0G+6o/+DOgfifbEz592fCZ5nWS45ZqXyP5IZkaknUA8cFF2hjjRv7/sRDo9
8vM0cL9IjY/zuBMfd9SVM5rv/+UteaXqcwk01BoBIDXrUdJ5lY0IsLnJH5cde47mi9ZBvujviaSQ
AIPi7oY3LXtvqjxDYEzcyF0hPeciMw/WQmxky6Y7yrmXzIKonJf0XKv0KTgAAvCjV3/ZRUNZnijN
eKh+Y9mxs2yV2L7EeKgr91UW9bJH60OyPmE7XAZv+WsWxw/WnVgPd2JbXbaJWa28weyGenpn2eiw
+NVsyNNABnRBaMv6XD49NzrA7ux+lPycjQSUlXillvqsL8QTOt6n5fdls82yq7NPld8RUdZMkLOf
a4/b23lZgIW+lLxmBMgVv0bpXbMo6uG89G6RzSoW4wOocePxVc6MMslGMNKuqB4MXEuL0tjMSCjG
+eWZpfRyco/Ncij7eZWTP0YjAsAWXoMcl8YOAMVLL5dVjtioXS0GQ70zLP9YGqQLDXZCJWhc0heZ
usKZy24n3E99U5dW1WYp1EGzx+QMVnuXGAql7mMWHlRtBsINTE/j81S5YsU6KFbASWdV5U9qIJUO
29zEgDcrtWFyG+GFhg+p0nJ1FIaMnrQ/DD8ZCs8/g2v7j6Dw5Xirv1wO4/kehacfjcKX/T87zC7j
AJgdy9MwTU9iIxiaW3t0t3Y29/ccnqb0p4LxZbod08OfBsbFkf27oA43pTEBjGNJwT0xCiQVH+8I
51VQ7qEC77EDqYfT6KWLYnLF+QIgZUsP6lyFOcLwviObAfvCsvzVsmEPqAs4JAJzPbK8VlMAyUTg
uS4YPgTOaDR0jovrUilQUgOw/FIsCIibBI9i4Z8wyXF9n6qj8KV5imLSbDzY6Nv2AqC0zcteBQqr
+Oy3aoW7WGWSOv6IzoF6l6N4IgAH8mHp5TDG5QfIfEsrIIGqbp6JtNpzYp1SJdXWDh29iTihFmeO
7CLLm4Mwz0ilvWpzeUvI9PEpoVbfnEe7CIx+J7LSia+fxA5yCla8Nly+9w02iIMRXSmg7YjaZLsq
zXaT0PuZbIL01isdb69oKysrYTQQro6KBdnhviK2iwIg/vp2xQnFx0Y6TWPz8eKxpStnDIBg8hc5
b+yZIN00OdWWA7BjS8SWkYnMFfGVyuMdiHx77q9S5avj8tc9D0+hZKBFg/IGst1iFox7wdUwEXYI
SldyinxHqcXBAPr+dih+uwgTnfUCObW0H6dk4B6A/4MQg4HC9X4aFGNVB+bKhdHfg2E4gebXbDWY
Gi7fKNJYzjrtNvDjBgDz6+2tYDxzJlWDqPwNwN/ZdILGl1foj3kiKgEcv/DnYQZnTxm1ICqERjAn
yxZs9f1kVRkVIEY76LeoZA12CYiwoV61W4JeOCqptld8Ydku0DGE4Njg3gpnAXCB4vBjRlsnAxgA
4pvbEUemX7BwiAsgP+nflo8YkiQgf7Mxnez36gu9zu23Z7pcFiT2lrkgo0LPNNJ/FRR4imN96Tje
rN90HAe/ozhb8+Wgm49Mhsy/aAtOuLzlhsMFzePX0SY+cfgFl7/YIfDNEZei0RAwvfnH6jc9Fg7K
Ecn23to8+Wf+vKxLglwB3WihjBGmBhD3Tu28j8sHtFPKIM0pQN4vB+1FDFLz3d9QxaL9NxB6g8cT
dZwzAbnOAZ0ZYkrQqa6+esyWeeR8JPEWBI/HV8yX6m+vuKDD2B1lqjoQ19pcxIsZhBi2/D4Ddb/w
8hn1Zg2QPPodJshdP5ozXrfdqAcgWgmUXazplV74z5/OSj+Kz2XkrAXI3inKDWqrUXaQwOudjkHU
6Vo6pu0hfcFAzhYjIdj6hbdVudjGRrbdLVuTNm62WSao+mWPsrPsTDKSQNW7fUXZyp4rOoTKdttr
1y1nP99O2pQ8EGUtC7QeFUcvZ9NRX++3GIDr3Z7+A700yhVXLyrKqxXeQmIwSTBcTWdc1CmVlE0F
77veLIrOqWKoeqngF63n+EVvsYVLUwm1TsItiuwH+wxWKJzYu0PSJ8UKMJNECxrrsm/Nunqr+eB3
+yhevai9qhYfMGuDtk/utllP/s4XvzsILzUJSw20K+fVCnduFlhEDzTMIrioL8symMMd+62UlRN2
JNNWy0ajLOvNdOnGMNLljvu4PLT0SE3NEa/UpMI4iAwXPPhuWngW/2Yw/zvoW+V5HhiyUDM5AVJ4
zAz9qM3nWuWsDUVNJOJv3ymXRUtPQnPL5mrXQR5lQWg/iqd9J7NBik7qZQ/mZd+dQe2dxHCgdH71
s7/AbKZITh5K4tOp5mmHEVM+/58EmIZRnpzgbF82NN6hRjy7DGeB4fgnvEWV7xHEl8t7f0acfylB
V/cE4fTjg/im54kE4YFBfDmVpzQPXRhffq68Qk1PZYosFp9KiU9LQz6+SAlxVvzSCQjnWMTmJIhY
Nw0BZEmLVt1WlbL74bVqBIBVMqjgl8Cb0rmq/0uBXsoCmatelEDoS4EBPjiANQJGdmo1YSutMExw
XpwjoELWVTzyfrS5XSwCMGnoiFyNtvxxAVgICcK1iE6O5dBP8M8J33XT0ZBKpD078CQGLwZ3r2UR
a2Ad7kfksi47zVKZmRcksXjgd6l65O1IYIX+uOylAdcCBjNJY3eAwDVa/TMDCKWtwowuzW2xg627
algjgw0ZnSgldXugo6I04F9B5EzqvanAwe55cQp1dViJ2he7G1mvMYzHmMxn5SuB7jZpZGAkmXnP
YL327smOQ7XUFzoHlMx829PdXS0qLHDP1jvspL6cmWxm8COqRSrhbrQD71kQhF19OKqogvYU7kMM
mFq2UsxCjTgEm7ropPVb0MZM1le7dzcHxeu+tHe7Z2KLS/dU7M4gNGb4/Coj05bzVIcRNJtlM06D
XXpIpPVOjl04E9wyUyJKjEaIkVsy6e4WdBbdkPEIMtekromCC5D6tgYBNfACmGuCBKqlW3ixm2Aw
QNG53YCsjcEKKu9RX1pnDp/eez5/wowXBAZ27GBRq+NglxUdPZCqp6FzPhxv+LFO1m3mcsDvBoL1
urPTcJQdwlHGYRVZuAXbelRG/IjbzjIx1MGKThjstkO28JgEY4Ge7KOnIVSjU5bPJ38rb2mCihGl
W+mb4PVmhwk7ZqtwJXvm8RUDNyoSm/2Kc+JiGPWeQGcDGE5vmc45VpBcNqXUHicaZOCWTBMtXPqq
mWAPV5wdiMUyhAiAVBaTGt4PytSTdqmLDrec3Z4xWbsjmDpT5QTPQ6N/BO4zMXQOB1DkRkf8gcHM
utr1clM82pBxBKPNA7nzHPgjAhEG8zLs9hOHRYtqWKExq4s5sSzU0Byu0XjIFh0l58XQQg3Nc4lr
dsBVZwsOv/w28vqjJw5OrmUbirP7FDg3JYAjolYYUQQ7lmydJrfVt67oYHcbsMlLxfN6tbmQTq4/
YxnnFfc8medafQi3i0XTsLozr1igt4hZLioo5A3Ha2bXnmc1ZFgMOGI05H6zuyKyoliIBt0GxohL
2pf0GtgblhengZce3aVBpGpl5X7DvZdXr6VmvNqAZBPN+qg041O0sto6sosZlDJpoD9uNGZTyOr0
qXal2WIyxIxu0PvMjnSeMtitC24CuJljZHT8cln5/InNgifDbzAv8GAjkD50NxcUxQUF2IaR8ZMP
g7HGtShvZDz8IkI2RjZLLiy7k70VLk1eVg4chOU2gTuPcoZ9OQD/4LKizXrcvFkQLOaO3FTebC4o
mLEIwN1BY2TAM1hu7ug3BAFGO64UiuGqQipEUCtz7G4qsn2cXXVBI1ZwX2FHI2SH9GDrvYlgqZbu
3cOkrRQoU83SC/DTX1ZI3BrtrSM9dSg58vbyrODJ6GjZCk+McRzUgzo2HvBOb/8oWowIjAjKHSIo
l8thHNT9WFfjiNCRWQm/uBHjzjSIyQoHxkiPPO7DRyf15mCUXwvWxFFXEo2gIAP7l4LE14Ds680o
VjRaMwS6ybda3AwpwMQh2dxdY/KJ0L88+xTLimmDDAhov7sWZ4r4lFGNDJFbkC4IEH4xHXdX576V
gYTfz59eKXFhJI2RAxv93cFovi+gT19MPCOM/Is88NZFyPL1tkAfX2CnTJUOf/B8d2/tG8bphXlB
rRh60iWbb+D74is9I3bw/kmR7n5QfNECq1Aymi83whQ4O8Hv7d5LmmpkV9osiDOau1zM430HZWf4
YkHFiRvH1IfdNbqvjOkxWdSdvn3inWLi7cPp4TN5vLRQvSLeJ440K4PhuzuMra2g7Au99wU8XghE
xGrdU5sVrOPQCr/3hYygF1w2YqGJBQRffKXjkwrF90XvOKtvOMt3wQ8dBVUvacL0feHlNXPNT/Pd
28k+He5bkEDe+fwJfF80QUzzNq3HYsRfuF2sHQFGGvJ+YYJVx8u4jj2Z1RfPI8lc3HPsT0r5ymDk
35c9Jyvi4sSYrUgH3F8Y6/BIMN7vi+70S/VYMTVNgvbLb1h/KbxW5i/s6NCsCXoqJmP+7o40CDoR
d5yMAayf0gPLtj4QgPumqKKMkH9fNErzBTEkIdkDY/uIRb/rjBAS8AvuIyHSkj1P963WXWmefdXB
fYLfKOzjkfIIWx/aevbQTRJ/UQtrYyDpV9/cBfrbtYC03/4LoxN+LW7fVp38SC9Ga2gA6yIMyY2e
lAYYeauTP60rFgb4cIfsNbPyA35e1ylEVqq0Zhfys+TH+84PAznNld1v+6Q8Fe1P61EIBVbl5dm+
UpnRmvLzXaVw9IShCS+wc9sz0/uqRaVALT1gVdsxei6LyzHgT3dVAyAOYkl6MUvMYC7KEAYzQ3vN
CsoHn7BsfkR4QIA5ya5SbD++LsYkLiWGSQTEkwaGyHffqTCbiEnJdmqucYsvCyE1szoeGvmdTFO/
FgZxnEal2zn1HYYpL6all9vZAlIm+/FZrWvFXj+g5dWPeP4mDIPaAfRWVPgU73567uMX+esyzm/T
X+1a1fx3KX0T1/YHnHgU+okp8fV76Ex8ZEau4Zey59+ZkefwY63Iy23bLMT1aY7k2aThaR5CsyPH
YLbmUAupOMuu+adZjx/UeLzson+29VhFfUxeobr12JlWOP0mvXzRfvyIOCqXTZg6s217ZIS1mH+g
XRXm2bnZ46J53mTdw/JQ7ALY02qiXapkvW9OSc1JywVSuCbZTMdkTcfC644sc/iKIOU2Nrr7y8nU
I/QKqMTK5bIHQDjTRkiLsWpsPL6egS1wslfajDV2f4vDoKjZtLj8BUXkwiy2HaPTXM92oUyx8Wm2
t5PeQV4QiRrUMQ9ijbrCk3XM0DTq7Bo38sIri5wtgG5dNrPxGwpWs+zJKqeBOWd7J2wcprYA0CrG
YgQYZI2WKGYoBigNCj2hyjDQ5bxBzM1yh5DrqBPadxTq0vtlGMijoabGSvPi86ftyctOVKN7wEU0
m3IeFS+UnLA9Q9ZIjXQzrMUvbwwoAEYOGhIgASAwG78cugeXo3/pwAnGY+qTpNEo4zB47GmY5hMj
7UViRN4IF+jRI9AT5DQYbUf9L2VWZliRD9n31mSEGv2EFwWJf1RbnAX9UaKC2hdHE1SIcDiq+MUp
r8viXEZfgkcdaTzWg/z1dnawDOcqjcjLH3CoqK3CJDDsR6t1WgmcRdqXVPriYiV5jYYheXO2CGPS
wMWhg2haaDYO5vykHVlVKn7AE5HaF+LraYGQmXz2Z1eQAWUmkTLjPYILIkzJOvbKdVsgib8ebHWT
1xtMcAsW5Y0Hg0dXqqNJ1yq9tLL6lBxI1KUAxvbgseRGntH2+c/8vhKYD6m/qbrwhS4V1nagoViE
Zly2TGF3onfOf+aCF6vxDjqcB4/Ojk2nTqmBP+g4LoBzJj/9oJ6yvQ8OdElycNM9n1C6HwgzHntY
tPWZe63y6ESzk0+otyWr7BBYDMsislC8sVmStTP5CFkz3Sdyr3JBwqZsPuiloHu0GJQ7kEm1j7J6
eeDLK1/+oZRWTT9H1N/4HTzlfzPEDzzlIqUV76W05vnHQpxlPzYlLcM3YZq60L8SnkML/ZsM4Dzl
IT2NNX4D5izY5qR0Y3EKAOWck1COK0HOGRpah2X+ihd7xFqVs42k4G9CnxlYxoRMo85hLJ+zoQiJ
vRoBTbB5ReO0AZpscbAuV3eGvokTlDJGUd1P7tXe0HkQg7nBNajj7e61sSGepDutyo8GC+lA0U5A
17xzyVRiBZS8dcqvs3mxhWVHVA8pKAIS8Oxgf+hc2afb0SwzfHHV8wg/RjhRjOKLOkRl5tJ/fTRB
2WTYxDYN+A0gzjvRQK+SL4GGnThRoOuZHmGY5AvD6gzNKM0suOv66lK1VSGYABJinKDONQGwxuvF
Jh2MkiBY5A2hRTiK8MTgiOT1clLAAD2fMJE8rZ7sPQB0UCu0u7KB2KD+lOjBvpzMCFNNvxcOM2Aj
kX4aqbZlJuFgnkcqcEFiV5RYzYn9+dOG8BBlq4GP7Q1CnreTi8IOhkFe7ZFs9FtT0AWwlqN/Mgbv
rivcKei+Elkkee8E/zUnaaDcrwKTZwaLPW6aMEimz/rhiJB410KtiubB4u3Qj56bEM6FECKfKKYS
OzRQiuKJcrlQroOjIGTayxJH1S/PPOxj63cFjIPH0jUkAT5xIqW1lVxq51J5nRkxZcagPb7CaCDM
waCbTWpyq2YRJm93R7j5ejJDFgaWolxNq3SweDrY1tnOoZK7B0hybYAT9mCNpTMJsd6xvTlaD1Jw
eGKQFLDm4A7tZdIdSqs2kAdvClIy0cn9bBhlaYoF6Rdd+urHvrkFSmvsTuyjS1FkhsVZbw922cnc
VfdrGaAFcAiAdcFi8mFh1Dk1LU5VDMzNpyZSaMQkWrLzF8CUo07sa7CyI+GIv/ZRuHoNwkRAD9Id
YfhaKhgNfOALfenK9y9z24TVCJNq+4rZg3GFUtZuC04FTgLsGe8/YsFwfjN6ufpnhkbh3TX10Vrp
zkYrAJSgEzy/7yREgA1sxAcACofeT4yfpu9gIvoQP6Us+OleOSEOPxpAjcHSBcThKaXBpUjHaX76
/GmcSovZil60JNqSntI3iYbvMdTnT8sm9xNjqKQO/noHoZSvrZqdDqHEuBKbdccgVCJvoYdQ4E6k
dxDKyAg9hEqOaToIRSHMOwjVRP1XEKoBNodQqZKy9h5CZTNbdRCqTGYjWUMoV/bvIJTUtyAorIdQ
0dDdCkKVTreAPesFG4RSSxPBZQ+e0Lchr9DTyEwBPXiKauMBxe/zJwRigQYXqkGTNYBSMGryBKAz
BFXHVFMLSEYXkzQPILDFO9xUyLZY4abIsWi4CSWh6wDYtCENywTAm5Dp69EosbBKrMBT8CQHRQ+Q
SREPIG2z3Nz207pwZcyzYQmFPTK145pEFsycoMFPjqFTZ76hxnkws9PUYMeMJsJ4Q6lNRYZUXJ2f
qZupwqosu0ZLzjwT7ubxdqI9YcH3uTTVUkOAg5F1FS0Z0qsmutkInHK5vlFhspKAopFPtxPFmqoI
/zQa4I06+WQfCGRq1KoFJEBtEqDp5WLGr6AmPEVNLqhdAy06OohjK5kVEknuiNBAoShw98FOij2p
flnU/TQYZuqfUt93Z8ehYavI8VgaZnLHnzq+XcwUrOIXBzlwwCWJW9y4OQw2BNhztojPuZ2bwaKY
WWdzAyw+r6W1EsxzSBjippdMLOXmOYhBZUfEK5OLOMsccFYIOmQLRxf/EktHgqnlvQawRgNYz4yP
BU33h4FevUSLzsb17Cr0QZPb23+wIUgAVOALuGzpOLYgKLXOfP70AybQYLID6kx73DR50PzgmOrl
QJPUxBhTwVQAv90TcL9TtBSjdmAzpoaeYPLrHptMnUAludQytr1M3XMMjNq46W1GH05etccX2arw
wGwCpptTVBWY+/pBC0u/0z02mYDp5nhXPctagOrha3X1Nc1PcLDRnEbZeihi+vFnooulLFPRq4e8
BvGuwycjF6r9vG9ObsFTL2DNYUwnUzLd+C1szi126q7Hxq+ekoDCmJtzaJ9IHkF1ZJUYdit0w01T
D8MMo2wpyebeTyNcwBI/hYgItRDjOdM0bZPmyMEvfGrSD+lY+mPzTHKifk7X9GG0x5jqQOaASr9u
XLCPfYblrp/zhUNW4sbVT6e5hVD5eJSvHkK1IRNw49tcGAL/aI6N1pj61ZMUqLl++Uv2xwp5i1or
PXu9NRWdICRFdl1b1HOLqvIKWvnMppg53uayy5l2rZ+Nqog49m5w8IWyHtS7mlVuZV3NpoF/6QZ1
bP1ACuOy45iIbRiGFmZ1N0Gtyydfm/6dWSEk2IwvUAjrvzFzWXYTYIKg69x8XN7TXAhCadx4Shyd
BsHojN00mMlVZBT1fZ+NbQ5on3EWUKZEyYxYzm1sTO7UPFZWnkxGm24vrrLImqVuth3WfQZeox4F
/tRoeqe+n+GcwQOFp1j/AKpcVpMmsXzlwWGdpV6tsX6wLCOfGPudfDLWY/9uJYwoAXPy08IHcDZ1
0344YlMwVUzQT8VRA6jHebWHsV+F17h8oPGK7NfuBPPqj0ZuXKqvm9FlfURQw/S47tEprj4xGe/R
vqA8wNGQiquYAnetPuFMR66PU21zKpDveL7bJnG2UtD0uDq7qIEzFatfP7MG/gnb5NQ/Z11nI48H
FANNta/etG7U6Muqb1ZtxMe778QmcIoNs2uV7uITgLzDH3tAJoGabjauF8wH2qq3aRZIgDy/2ylH
/m09zWZjPmJavrhyOXqMiqdHP4xN9zPaiHZ9nBvt8UVQabesZmWfMBK3m/tgMXIS5PUkMGFT+ZDP
tthojy+kY74ci3UwHim+aNoxiQ+V7kOHu6cqPmQb+KiWLkqfHkFWdfw9k+TYARKED1P6FCJGfdm2
1zsWKfaX7gu11SmBArk5h7tOg2I4FVCB/g+mXUoaYUN9l7hWWgUpUiZZ7T8Yvjr7UU6Y9eIZySsM
d5saH4n6OmjduLoqmZbR9010kjMjuR0cUzv4ojEjCWT09+y8yA6P+o+rl8OtNhSalD50zYYKhZef
2LY4/8/xzf4gRodf/iDfeqcIlf+COGZThIqzmQznKTf22XKzaRy1NA9WKJb4lIY/0T+rMcwr26JQ
z5QskdSc9S0SmobT/mDZBGew0OTqjB0nBWobiaXkCCKE+JjA2ncz4g+w2Ok5N3P360p+/jSbaXC5
eJP9EdVcFanupEbQVpEQ3Ex548uS5c1UQ+Xb7e4bPRHtB1igMIV1b41d2dFMlW+myz95hZYvI3sq
PJg/WM42d/vCNkfbgRiCIKCUGeZmALPLnLpUCVYDRGIxG9Ml+d1ibr5f1Y5CUY0EUxulWr/wWrdm
PptanhgEtS7iBcV+NZIrSL/uoAbLCaKsMA9h6WeKgYkh00yxQ7BvmECM3+ByMDewej6YgoC2ULJf
lO+/ux08WZoOgTiEd82LlJvO0+a2Dw4OEUSl7LQbqSZdpqZnmuoeTze/EiMqvItqDtpWJA6Nvb10
GGjQFrPm2RzWTBylA3vWy9PeXp0TzZciGgbXbNBAjMmZaVdkvDibFjg6SG2bbjZFpE1s0bHmDkTZ
6mFuwZQ7adT0vCPIu6jhzEdLGgkeEgWd1C796Fs/3zw1NfpMO3KAzBpFV49GP6Z5ee7UH+mKLyYx
CzOnk7/g4RxsQKx4XbmESdje2PQ0iVzlqekVAmkjgur2jmbx3EFe6+jy4RVpRCWlWtIwLtjmwsic
lrB57r1y0UyeSE5hRmPTQ6bY05EJalpeArN0goj2+PrmjQLpCy5j9zFnM3R6r71evdcG2kdX/Uwm
XLUvbK8Xs2ezJdU/YbNk8JjoPbM+6BOmWsqg6GNnjUcXBAZFX6k7bR5w08BmbPTZeATYCDSl08lM
9QwXb9ldVv0FKmL2SbB9Q2viQP1iBkVfzz6Rk0dFv1mwNoixrr96n9QJ5MgcqTL4+PLmg9nJsL4e
praHRHLYfLVkykIzQvrQ7wf0LuvO7S9PGL/lRG1ZnLr9SW2hb6m92wOlUXvuIEa4Vu8y9kvvI6RM
rW4LfXvX6sjI6UPfalNYpikUaYvc3Ae3gUqx0kaabMhrM4e+nr39zKalfo19wdKyFelKrc+UlutG
HpNSY6odQ4Jji5Dq3a3j2WbThxKVDCeVYieACbRbUpUGTpjoSbmcO9Golr9IGZFMyhq6soNZPP3q
ySRQ2SUCcCMA1QkWz54HQlMnmD24OTH+GunMY+s92DNlIILd/yhYS0rP4a4Oowb+x67w4JmZbvvi
ncZ3T9w9WIvch1ZP62pA7N6dCFpWA651enVZbmjFfG30TvBbakvI8vjqVxXkblBjploOehYs0zKd
IcHs52bxrEzCcnaaJxKLMy/TwZNC+r2tJlcvGAYTXNKBfHMvSDDD5aumZqRQMD8QoNYP26WAwxat
pBoR1ZZtR2plAqabm3RnC6oWNUC/u2aKRUlfWhI82eV0Emv2pTePD4r87blpJH5wb4q5/BxhO2H4
n0PKEMCqF6cQ7y9Ow4+W0l02H7s4zU9TYVKL+FRyfhI5+k5JN3nJZAzYp/gtHd0/zsr4M29OMVK6
lNntzVgBYfV5dXWSK0b0wB27Ohlpr786xdHzWFBZOtl1RCZexa3Jb0HRA2c8cgcvZoBKsBuWVi2O
RpdY3ZmCqRj2d6aYLKAlOtj4ofEXEb5jl6WIMzusbkteeuguSvic562wuw96LtuVrhhYwAUnWTCP
dfSjcBwMX8omE8H1aHexRreo/QUrBGr2ae5a/0SwTzAN9slSDMACK1h1UosH47FwgwOLIpjeeTY/
GDtzborjLD/xJvWMuwhKB82RKXcl0Uw3IzGJBrwK2+8T3r2sA4368PshqaN0K6vWJN2kHs6zudnV
U4t7RM9mTxvn2Z1yvO0wRwXqAxYmaSAHVmdkUHukZ5lF64NqcOG6tDFL18j7dCwmeYMtOY/k1T4z
ZomFs92UJO+eH0K5NvLsRrVdePHOxgAxxZfBOJVGnm1ll6NPKzixE+1A8ltS31kBDF/FS5curMRZ
s6/NrlsNoMtZe/HIlqKKW6SBaCCUOcD9AdVeNAmR1A7V6pSQG5MDljUDQBkh+/apTheqOX+TcSpS
d2UqXSIKZJh9bcZ8v/1Ag8tgQWrpKI6Qau6fiLwZFSg831rky0yirXWX2aYz6B92o2z5VC1vxTO1
hVTny/xFjPLpxg5N4cW4Wf4tAYVoQz5YFCWAWWq3oa44+SBS9YZU0KWIwtM/dMblzCDKjtVSOjrI
jr6cV4MsrJMSbCFe12dH8xtRB9RmhvWguU21As2ufhtS1s3u1LlJEgm3b7Hh0fT7dXLbvmwjwbdW
MHS6LdfZLkOvt0Ptca7loqDw1+1Q1y2uvHhCOxzPxcYMsau5tq5/bnS5vsEo3rlFUpsNnVzbZZWs
ii6Voiif/z7a9efakcv8EkCmrfPgJ8tEYcmTbWMx8kfLm8xXy6VHKfOvBydgg3gQVsZHpxqpwGw0
4NiBY15+bkyHfPO8pZ7C9uVq1OL0ceY0CBb81HgzfA9DfRzek4DDJCTge7nRefjRVvr5eTCwSSt9
DJOY4JudfrkiFVcbraESaYanMAxPqaY7uLlgTGRtOMmiSYoXzrDTC/A8i8FVL5rLXwV7VqCl5fhV
HvBt+e+L/McEJPohDBV92mePNAXZEaHfyyXcInmjKjHNfuYYpKPhXVVu1BZjKIF296vzXYksVc9O
LVeHkwWBCMk4Go50gbSQ7JloMoghU0KZmRXw8lYwWWAEhEwmIkiSYQHNBguzUr1Qsx8Gi+DKDbMN
DBRmpBUMr5ZIOjiDt3S3/7nhxKWZlzUZ1tRCO50tJIcbNchRy1rcKa3sp9zKghdM0bxHSYBmdhZw
eAM5p25tLxYxP3f2+tnAPKM7/Oc0GnJkEiuG9QZTeQN85PZkYWVRnZORdSdAJOvUUslrVNmCMiM9
oAMTwwyGGo/NyNHCrTb8MZj0JeFibxhClKoCRnvFbAkGcjOfPG7dCQqzc2yKaQGSlorgimFpsw5N
JA6b3hqCayNzXLkZyYAh0rPq3B0of0m4eFgfmnEiNccqnJtF3UtGWtQ/f7q6NXVulnTY5Vt258mh
ItQT5cUqDg+kuF3nac6GEoOxiItHVvH0t+zjHQx8wI3okTnLFdxXA4imYTiYQJTgQ1o6TNSPwd4N
NUYDgW64SXA0GV8YokgtSXqyIKsthS6HxGwVBIS3oxO+qsYkCSKEl+vAMzRSchOIsKcLEAu+Xilg
xauv5UYwnrPakagZupyoFqLfS4aewl/tVqxFBHxbCOGQeIFhlNWxkXcmQ4LGCQ4sagqhHhWkxCYl
AJsqE8xeoSG/Wxc0NTop+OYhaJ1E6KsHO3klkjZPbwq3vXOjhxZp9dpMWeTL5mckwVDWqRPiEO+E
JakO3L2hjwDdVGBA8Mv8MWidgiAEoc6PzGDxZwntphXqZzaDfQRLsuSTCvVdVtf0o41gk8du16c5
kxtQnlKJTyImEpsRLFv+1+VzRiEIbiX7w6gE2aR+KlTywNOMWiKV4iAdKsmVrIIelTTpE0MlKmiu
qiNLWztQYswtBsEEYpM9BGGgWBjUFjKtoEkfHqui5keP4I6kCnTQxAgRqmh+Mtdrjpac1cxbBDy0
WGXG+eFgnqhwrsAE7uLaTmZSAbo4ZrXKLZXT/ZBRPSZSoZme9q6piqUD+4cftzFYFDhtCMRIanMK
Hg2+NxETSNELNtkSCYxmnZp6xNO0emYLrZHApFkjtJi7z+NIRkIO619x/c7kAazcdaPZvIKFGhln
ARUuBkjOXXwN4rxFo8TDqZARO5p2SWndRgXzHTPRhmR6K9wC+bOrfmelJBRHAnBfOSCxyHJIbkbd
+FoE+URdGhvsgXmHVCam0oerP9JMRzfRPrWygcYr/7XSHQg0srkZhyCYl0QBydVmHEFYSy6A1umx
rC7+ow1osiyriLK3ucbwGfiIlLgGsWsJfE9Mr6oNnOyBQNuU2b90YuXSBTH1L6cv/+ViAb0Z5qLV
0tOSA2VnWA+6sOXdwAwMX8KqgiVhpu8Z5ir1iu8ne6p0RqtXBqxP1t7S7FvZZHbg1AUvhFTRybgK
FdcVBhjnLm2TBeFMHB+VoeERb6ZfRi5dpg7gat31UqGee95KEt3UDF062WRjT852vRpcs6Y3RVoL
iUre1lFUVHExaGJbQqRMuWRyb3i6hStdQTtyLcJiPvrL7bx6wCKW7OdM/c+svpfs/jVafzCeZ0dk
2XRnGlUR5pac220CVU6WAlWcjqVjtyb3zV/8vdEkZ7R9pkzfrGK0QlGOQRkTlqcJ6u+3Zqlr/niA
ekF4+rdgsVZTl8nDDTrmi094xJ4YLDTJr3zGMzVp885vOnnYdzNGKzQuK3ko2sSK2xlfrm41RNRd
Cf3+HZD+Tu1Qev+6lNZYjz+CDv/Lxa4wcHvLam1Ra7RdYaeF2tS+ladP/lX1Zh9fTv6Vwj+pYU9T
qbTPTAw3knPp7rGZnnvfE9odyMORluJ+vzBJ9OdnS7OhqNXc9Fqtj8SIfh5DWvouhrTxPWIdxJBG
v3GHWMcfbUmbzUg2ZaDQKfRaRNFR6vgU62hO3XkUk9r8x8CqQFRx41KM6Fwdqx6LQdU9kOo3waku
1oPLsBu5dWsLXg1mkFx89kDuIVJdbrY8PsNE09AMM0iTgCNxGslxzAhEyw1A7OHk3DsjtDJ67/Vs
h604eRup1ew6R+caFuO2EhEaLYMYVmPdLekNjDMRUBZh8AohjK/CvKW6uzwebnsLNZZjbQKmtRw3
nkkRoLYlqRyqBcuXJkYzMGMM8CwteTArmaO2e290S5sIEcpe9eYmEktT6rmFgH/c3GY/t6ZO8Mdo
3WZ7+UTE5UJm1Tit/uNs6rqzey0HMpkSxY12zWoWaHl7pmvJ9mymK93uHWCmlpZnwwzPu/PaDxU1
8aGNJ6oRqYncHwhuZjvlVg/YwVIzAm3dvUIrF7Jc8eV6qFl0vhT3TZaeVY3uBpOMJ+RMniIhrk/i
nOmKXd6kgThHk2oMJnuEleSEmsmsbhvaJCVQ1uWNENHtTg5KFikoMvAKh2H0HMPYm6sF6oNg+WbC
x3Pz0W727hYaiGaByzvxauayJdCFgFLvwjE3LRLguvKzWeaeW3aVQUPbSwd5u490EfsvrhAMplhK
NCF1tcp8gElodXl0/j8xIycDS33TW/x+Z0akGlFpI8B8vwC9b7C8lvZ6SBpRC1TfGz1gf+uwDyJ/
afS4yr1rTw+Nr7r1NVWNjGqJyofORT0RAqyrYj5YzLWh99auq8KsNAOnzTKElRbEubllt67WXFrO
HqTqvV1G4rLZ3bF6GVnVh4g0eowUv2KOc0BgHa2uEZkk1eV9sJtdTBGoi9vftNAgx73LmodN72jm
UIJGhGtuboduKOifPbYfqTdU/BreAKspcSkwZqB3U46aGlt1a/wJu9UrMr4gHLGZ/yxknzu80Q+K
heZbf8nysUi4ZMhYtX1JIhmJf32ZvnuEecMB5qPREDJS4ZguEnwieKwyll8H9BCNhQDxVkXKEHW/
3D0RvG4LLM5Gv8DZVJR+oYGf2m1ddB8h84F6xV+shrAOFfPMv/8eHGBbaMZ2LUM9NeW09+EKVms1
Q1/NhJi9Be0XXvYWNO5h/A07bxvttXjWIFVrw5Wvrx5OanBGL8W+w8dG/8y5eywa33XLRJrtMRjE
lfTazPrkwerK1kyJzgkolu/UNHVP67sFQ/hBFL34Y6NWXSmwB/Rd6h+rg1eOpCQ9fDQjKuQiXlu2
ikpy7DNJ4svV2qkOuI/UaJGgyzGyfozpE7VV6pdks0Zjw3biJfzJu631AmjQGszP8O93H8qt9/rv
TIzcx3e68WE0Px0BXYcPxo3FDrTub9Jj3+B9crqPx/JvDrX3TPpjY+u9djsEEbxO7zth6uu2bSwh
JGqaV3Oue2z2o6RDfRLI/0qVjftJynB+ZbB0n0FCnUDws+JuRIvpX5aJGzZQPjYDHakhIy/RKl/n
ILCq5WVcMXVg2mQM/8ryYiLMo+4D42pI9AqP9ERNVhk4aiy6Zn3u940uvk9Z9QNC+O9W5Fi/MQxo
b1v66zkykn+X1p0KlYKJu5nBJn1g6rYKn1QADaMF83bFZ7f0q6pparMweSz/BzsS4vnVKdwGA43X
cP7LXbUQyI8DZ+vVYsKf2HaW1UxnSD8r14wqGrUxtYx+Xr4zb3ad5amL3nUWgvjRWf76YoH6bPp1
tdtNxfeG76i8HPJ3cc99YOwIIr083Lvn8o/OUbwc0Ba5m5+mbPmHx6cyTV12icFsHqmo+PKfauB4
WNk3Pn/68w0cEBkNg1k4zAeiviCShzYu62X2DFo4RBFNbZhrC0c1mstgdkomN+K9e23i8JBVyzlg
J24oLSmxAXdO51gtg0QT28l6BYFxY+sbOTTzxKqxbdf/Qj4RaPN2lGtCW0sd0SI+cBUlAd1UFiww
VOnn6u4Ee+h29oOtNLFBFPBgmtEMG+dOE9cTDu9II2AUymSKg6/75tgvPQXd+J+J5BhlnneXHLkH
ByKkXpxsNPLQtSX0mkgpMju7FzZ/3aV0uqK1021+adxYep3konTtM5HNZt14cXaNxECDPLRtGXTG
oZk1Xlock0kOdi8lEbv5BT6OpflZImm+RyL1vy3TB3vUIAbZe3n4+uP1B0rTH6BFNpioAEyybRMr
T2EixWCa69NgMvLv96tlbifsKHLRp/TApS74HXuY7FMVUZvLomJSbbn3T+o+VvPkbLbIbwicyvql
C1wVO00pANuIhQGrGTC6WgDY6LyEz0xCG5BkWWMcYdyEZdJ3n3MzKvKJZlj1VYq9x67GZ/MrMqQ/
mVHGbB5qLStmXKU7BpLV3IYYm7s5mM0XrjdmsFGEufEdB/HoyGNjRuVgv+mO21l3Rm44bg+hj4yb
0LaZ7lSNWWNgriYKEEwGVTdQ53ZnC3KBG3HLu35iXAT3oINHczbV+NdDx5wa2x7UXg2z4uC29cjg
HBMJuPp2PTK+RQUgTLEgdFEvp9u529sL1QHsx2CBKvGdPy2rKRx21Va6NoEAJCdfmeBpVb16J48Q
wM93PgHAsFg6Q25mV5gxdWqbNMNdNqfOJFYaYWDXtv/R7ai3y2iZV2EWhyn15eYGrhFC7hE8VMsd
E0wt4HmlQL1s/iQM2FWEIZORCUDz6qAgfdFuOUzrAQNq99apQAE0tNdaUVjX8F4tG4QMEWk5va44
b7CZ4r0fHAjTAMLQT30kfI+kaB8fCeKjg751r3hdfrSPrvqZkPJTGYLFTIaxPEnOoOCsskY/G5OV
Kvk+svIPHQvCK1MY+5McCxSSeetosnHojwVu75OCS/e4HZySYZs+mM+m3BwenMO+Uas+000gKo/n
wbEdEn06s43r/DqBWQ6DBdEb+4beLhh13XtIjJYZNmSptJByWJVfWngVdnt3r9murnyx4AGR/CKK
kjC2tRQEIdiOjCPAdk+vs0bM+Y/E5rqJXOxrdLiJtK6FXI0MUAyMrvGfg2lcL4frxdoM11LoLhTG
A0uGQV8NNxdifpLGLr08i2qZTKYVQ3qRmqhUFxAnwdXi/0YeaXoSqGV3QwrH0imwk8fY78KZLoio
FnrbsScL9jPumHGYYYIHd8zLIjcvQx89tDLTaq9xwVDBvtjcHDMPiWfe7ga3IMtx4J6yQiVuHcdD
H3QEmhiCjkw8bHlvavwxo8GI5aPCqbZxs7qlZAOr5d65Rko7ldBaoldYLKPnpnObBA8F6tq18sZ2
1xtXb9qhXTk1m4s9Fox4wXxmJLI06xI57hv2RrDEvU0chnJF1djtcG1e8/r1OrSe2EJtdeJUs4AD
F25Oxk8xqy/LFzrVNM7jxeU06th8axtHSJWhjaKiXdblOz2YDQhol3HVWGUjpdVDIyzolk+kNYKh
j2B/vXmLJ/repDTcN86EGulkE0np3EYvGOOJyc6O8PHZ6I3Ofn/LfXdZprMLZDH5FQs2DNaSNhaJ
DDTbjru3mzyuzA1vSunYZh82BXow47olQ4uBXL6iVWNcaGhxkBvEU7yt5wkZaJewqltpZu72GQYq
lna23H9FDsR9aV9Zdl9PTOLd1pV376qtqdlYZVjib7XrgOZWcxWa7jO5kdE2SDF8rat+m8lm5uDI
M0Pjo4Gf1Yqrs41ZUQLLU7+Zue7WY2NeNUwAkblfdwCZaWc4VlPfIHG3cZq14tE/os00f+9kUZLY
utpHYiOobTxgYzJqmklFevlif2pNOebVN8p6LqNm2XxrG+cBWiOquUFtTCZqyJfafeQSvOX0rNFb
3j9Wmm/tfYfBi+YdNhldbvq4w0ZzraFy17u6ze8/QvFeFcg+r8Zy4uDU4aNua/oyp/WXhuZba91m
X4l3Q2nNr7H7RrctmUeNG0d7yqRn3k8AdanpjuGlsZJr7vusnwCR/jRdy3d9Vsu3+6w2ftf9U90s
6Kez+dTOYVU/+8O7qRbpTOtrNpqrcXq/Mm1c5ncrc+SiqfO6z0ZzqHGXfVsXH4dVp3V7E/1pL6tV
MHJnGkOPhYhwoI0d7mqV+Kd2YDZqqP4p+V5+iu2hZPrYm9PYnwD2lCYRN+FCVip3HzmsPyLr39h1
rfEN0TkpNbgj7WED8bGTD0tpLraNx5xZX42sUP9Ap5Hd9xW9ai+nuxHEPBmnrhn76AOS6FpTOnP7
CJsy8yPaV6fVMKp/jT28HsapX/rrYZkCoyk74fKRs38KXb+9jatvGTu5e8bUtNGq9WC6bPZ9q6bm
attcEFk0rupnWeRtROfmarubl5Md/48vx7RuSPH2e/HPn1Qg+5xWc2uqH724jfklroZjGn0MVdJ4
3bUTJ6M+gBQi09S19LD2BVo2BBUcv+uguZ/yq8dmU8PvH1JkNXPUC0Df+qlAFsHqoWgC2fzS7bJ+
SB1C0/1cCfwbFvFqikFbOxle2nAL9Ye48U+YLHX1VOYp63kYdL/IppbNT909VLoatpapnXDuqOk9
Oo3UytZvrWqYXC+7h1mRStmXad19tdPL/vAj03PTV2+fgcx2E5V716SWJMMTcCNP8PweAqr7b/Bl
cOg2j/B7amV/3HNQysZCW7eKf2z1WzdLNLEtYYY/howEkMsWKeMPukNVsyGz3X1uRD2Tf65/QLcC
3flenOA6+t/aurpvWfEV4pMWUnbyJ63g/ZeqN+m4Xojyp24Bly/rL0FCX2vY1sdsf1u1iR07+V3i
uN6z5U82WDiy7741c3fxJwP5K/Knb82moLR43nbaNQhmpTB8tA3zuXA/q4IsEY2VDOGjpqn7GFkd
2xOQUafd7oPRkrclz3DRf0lf+eG8CJYwa92ioC/Lf2C4QvEt5uQPZvuTfUmzDpjLgU2r3rTW97Cs
hT80P8LYLvT+Rc75MHaD5t/jcxMV9VHFgAeYjBSr+TLefUpTq6BTHCUM9qcPejHqOZL7uRtoNgnR
JsaX9SOhCfY7alMyUYih7ez9EzIn9kizUO+eiN+efOoTOsTV3qTSAAF//Kg5+f2XkGwhxDYnzIGC
R4p32V1GqhBLNzhibfowyWf8OZwe3yNN+t+W/I3ApOFe4WcZp7/AEc7IJFP4metTTqkRdZZLd/Tg
pGkknac+zXF8GuOf7PSAmuQfcXoo4Ud239s3JSYns5JjEqsUIMR9zs3MHHLLnn4wUxmFbAaD8fSV
Q3kvZI+mN+rPYHJAwUN3mhMB9JwD1vnNZcaZb1yT/jJ+Xapjv8IfYTiW3gTVpOCP1RwgkJ3rJJyz
y/xs3oxyRAV+esa1Tc6JI4XHeM2yYd4IAVWRvJqDpMnEZYTJ6z7qUi5wpcDF+tYM2UuvIwXog1s1
6XcHkXnsZPgHOsqp98NkqtYvRtTZvZW7J5L5SigGj1BZd5T3misU+nm1PCZnTz8MF/HQW03dtR7a
rUL1oD2yftdIsZlqjRER/ibrLg6O3HzmLiYsLHSG16uwssjxeuxDgjglUzqvpeQ0x/rN45sZGGVp
XjvyaWKI/fHY8QcypSPVJ3RcI0LGFXW8h2QRWtX9BjbLPAYJledJqvUJHorkroBicfVL30Z7dekS
rZuWq5CyE+ONWlRatEQAoKjerl3IrvlJbowKe/EoCqZMJz3VtWNKMA2gF6dHx+ZGF3mdllSBqjuK
kq0xocuvvj3cVUV8lx4vMrryj+RstzOOgkX5uUuITjkhJlavq24Tl4hedanVPMvM+fwJ/hBXoeFb
q6raygox1r4pTsEf8tZ0a8BoFl+IZbJzQjYVeijErGkIuwi3aD6Rl44fCD4GA+3XGn8MOdpcWhum
pgB0JzOqIUctdgevzYg22Z5cLAgsP3d/9ITA3IteqKcCkUQPr8wgvj2PX4yXD41h034c21IzFSC9
aG86qezaRIAutCM3vajkno8mYYQM5jq0Lbo7mc+DyX0hzZSa/OOKeJg6JXwM0NQyrG+biBgMG+rj
6OKGvBctgUlpxendaA4vtm9ad0hl3aj3iJLqUTdfhpfM5stYJk6Bt9glj1LTuVe+W0/acU+GFfWY
IQbQNL3Oif4KjChaKCI5LnR/c9kx91Isqz23su65UGGrxyZiMJr/4sUptYEZexlV7/xMvlr22GtX
DRe73556gmek3P1LR48amrPCg8wAWtVN4RRYBMMx9OfYuKAZDnt1Tvig6nRj1E9j0c4e8HNpP0LE
f2Yff7kj/s+DOSV4Tzg3G0Dx1J3tbSF48s6XW3dWlOaMeJEJ9ZHAJoKvf2r4PX0XztE34fd4B7+n
8KOFrOJz6oSsSDlKk2i5DyX0MlbGRo2F6gD1PgfWX8Y3+nOgdyOoVOLsHnzn0TWsmk6SS1itsXd0
bacV9K4U2V5D7xxM1cpxtIhujgZqjZD6+ZMltV9qQy2B2PD60NT7wJFHGN/RcJ0oCyWH4Ee7kWbD
QCE3cSoJdBx6NSvFXm+1QUTE+SNTi5qMLJ1Kyg2Dv9kdJVTyUR3lF1Phqo7yRcDK3HjQXAqjY/aY
mGM+tIjC7oBTwU3KL1bcQAyAnx2UFQPeG5KUpLqW5+q54y5F06ZUQe/zOk+SikNoaqWV9EqiWBBY
SmdVMbJHEonGFNy8manCqUcqBWBZpNAxFLjCfeOEy0M2gJsAVl3hUZ7Sy16vCTAwYriQrgR/JP3L
kyXgYsRgbtPBwv6pY6/zKoUmd+WMWWR5J3/1YBhcKuKMpYvNV2T8jqMJvyIfWXSpK1UB2PGSVHnm
RRJZpJ25XUVdhPPNqbjRQHi7fyBzDSmstGzuzeWJSx2QOIl0mSHBJLLaz4ma9ILAW96pAA1zHc8D
Rch8iiXsV37TCga/3/K6XLK86X3JnpUUeNET9N3HvAQD3yZZHayWRZVle5GgaFykvbHMAFYSs17w
pbWJWpkotweW4V6dTBSpu96lXmHOEJOqbbo5oMBYRdl1Z0kHTUmRkJDIy0Kfi/pHDeQlymryRzup
LSuVjtepNDZxA9vh4wMcdvKf+gD/Lqks00ek4fDLD+JI5h8d67ZssqQCx0jp6zmkPo6keqDJ9BQD
pX3yU5zDU43flPZ5d4RvL+0M3+2Xi5vepT48pqvGnfwOgiZVrkE6WU0xuohZSyJq1U6tmQlxP3Sx
HJ2qJ5tVE/dZxwad+GIT1CPTF0Jusyc2DHqtLoQDrniWKnwinQzaLHrVI6nJEqJ2tgXb1IBOXeHY
Jbd8Vzb63ZdaP0je5fEqboTLTPahapb8MQwNHTx3XGHU24xwTWRmbkY4Z50mt74Z+VK29tnD4z5/
suMwGoCoTQrIJcergSgxI7mNcSIJ2V2DO2L7ahmlLKWlpytwOrJ0lpsaDRHgrE13d3u1vNGUoibD
4ACg5aTKxYJUXvcnk/OLA0Lchrvb92BWt93Fup+BJzjvD2tRmWxBKXYhf/PUiKWd/IoZ202P+VJS
gzmDhc0YQzn0GyOsbPx5YA4ZP+933lDYgeS0d2oyVcQxnl1elVLM4KZJEBd0M9LQTPkqRqx0t9nE
zJVM4kV4zQ+QwOixMCMPdrkPj6sJw4iVY+iCBVUSaG5WscnCd5jKIa5DEDViBZo8DNX2sU9YmruD
BujLV8yHkxVSqe3t3FMypoYJPvyWZnU+u6rIQIq856/sWjIVy9BiKtJlnbtSkaRmJWrZqE3nx+/c
Ouk7UOAVgnkDJjkS/7jgCg0iqdzVqDo6sK7NtAkDHewO0WrkLkdSnl0bxu5B2RCBjvVu35qdTJb7
xQPuk+mATu0z1gigAqgfdresmRhCW5BalFI11R9vg7DcXJpbSbPygWahGamCeWHqS5PRVvhXzUqH
SvUtR0q+bHFLy4Ane66Sw6yTq5u7oyWtbHXD6OX0jW+A8ZzZfjXhWbJfhB0yYUsTJ2eLCu1IPnMt
YAxWu92pi+wi17c2jcloKSjr/duhAjqurFSD2+xEDTp3tiRmqsTgvVyNqdqJY+LdH4kS1J/F0xm/
S+68j5BazGJquQ/vGue/QDM8u6ml5skz4oUkifPm2owtxZQJZkZ3/RkRvz8Gp0VFIWJz6IEaoqzE
+GlZ9R43IGnGKtfkQKBmQGKidrYymnS9xInJQchvw2XlzTV7J0o34sJLTWzVr84EbGrEtrhhTakw
AbbtLHgVobuJuK1Hje4oddgYB7NlhM44ZGFOarihvLPKbQfPSM7os0Pvvww039AgHywxoKs22m5p
5zQkDljaRBzoO8X7SXqpZoUpvWF/FNFH0yA/uo7EYCFl5w76rc01aONsoG13akArWWryZ+oNDp2L
2XNVtys9ik/mowDYIuHHUjYxGzIcOo7Y3tzzgvQEgthcmTF3YcW7Y/M5IxGBADbY/Lu3UoG8/Qx4
LWDt1IKvNDraNMhfLfGYpqZhVPHW77nQ7gRIa1p4wPlIOH7uYrlLZ5NpAsvMAK4Rxa3CEDEvd24y
SrdrsvH2BsK82q+sYOLtI67PVrSLIFveUO2ECGYUm/z3zsQQDW7z9+ARxK7+zcNSYduzpSERlkFL
MbFMTqo04o/HLpmcWWyeu8uHuA8mVdEOSIfjCo1uoGiJUlh+/D2z5+nW4xQHvp8swlNeuXBUTETT
jGPDuq4dMIBqzSfiSfRovGrlmRacVlW9F1zqSuAOMo2dOojbb17PndLkaCBt45cheG0YR9buSKZB
zrtQh4+YOQ/Klk6/NcdoZ+sB4T41Pa6V2BP9pUtj6ZJx3SGw25lU/NpIU/Sbvr6prfv1G2nMfq6z
/7vkMfvQSjMuZz8/37Oc/hK5DxNYnuk/mYapN9MUd8SMT0OtliqklPlpHOofP/4pT6THv0CBwsho
1dCocHuo+2HUU39ZlhOcArt9cXvJH4jtJiiIGggdZ5zCZtJxRwwOYRppRnMEaOSoZW+o5E+E0G1x
YbZsrdEdIhfmnFBfTHDTCThAjzt4IJDEws9icoGKHXfE6XqL4ANFTl5KfbxeQMmw+PTCBE84leEo
Ohr4SNEOZXo6JB8uqJ9wy17s4KotDYhl5cjGwbLMqGaTSZA/GtuJESyREbU+3FY0toy2D+ZgCkYD
Iofp7CZyl1De0ZMaQADS/GimW+9ZJyoP4E5eBQpVsY/UzwxWlxOZO6bkNqXrhMrIOq57fyDQUsIs
qCaUF5L5L1oKeSapAOstWmiY1cZ9JtupCXV7urLNmycfi340L5d7l/BNih1j09kEnTNEozpRZs/L
o0sqj0Uqc9N15K71x22TpitGXYL8tqV0CObnJ3epd2GD8qKmlOOha0DwcxoSgmc/XZl4WKWx7UU+
u5jw1q302Z0n2i7K6EEs3ClMr40QKDoudkhvL26MHBqJierK+7Q+JqPTN2bC+sRhhTqnE4AguZKa
LM/VZHkAyWhLOeoQdX2beRovy+FqqwFAMjW/WDcMmjnk5t5W8oKwTpGF3i7TLaOZ0b/MMEkfy6UZ
jTy1rUmfJDI9Lb779dpsIRMThDBU1wxMkXpCOKRf3/yBMJijZZm2fD/lXehneWtvH42+5KBNIhCL
5w3ZX4x2cb249WQcZAn0yc0q05Xp2B6pwvilTeiBBCduk8zUCD/e5PSmxoFD4ApMJt5DXXKzM6uF
6qBwbtVhc5nWbB/v6gPrSoGR8outlqXZMmeZUMTBC6JbVDe5ZRsEKQvjeg2d2YpWkldb6nJ/1Kpw
WBvCGmkMsddiulSnNr177ayJfMw0jbfOd28dNQ1iGcg8Wg4/12oH8Qejej3bqO5PLjeqo6Qkp4vz
ffnTevpClbZ0yj0jnHtOb9L5JcnbY8PawVhOqxnD/CHX9nZELJTczd4Es1+xDKA6ntd+fgXwnJxq
EDTFKPOFXGHhk+vHCqaWxkVsVluoHzJzyPXOrFrGbhf3JoxdEx51xRhSBg9s4sR0I57KdRUjQb3u
l9HQ3e3S5ihy9gkd6uW0GvKeDfXYLMSw4SoX6hz8BNQnKr0X576LE3lQp9XqqqG9vFuH1c3bbW3V
2L31IywP4PRTQ/nvkvvvIyif5l9+4HBN9Ufn/lsGnzmJU3yqM8X75qeQg+T+6+x4kycmrmbti0/z
8M3cf/dgHrn/fjSYX47Kbyn4GUJXnByMGIX9LM1CmqiG5VsuvWzGpuDAP42GdFdg3kvK0XFR1Lel
5VAxrIY6rPygYsUbjBC1449RQVsLRtiboFAcCNKX+zetbJIOeewMamejDdGRWRobJkZzozK96Xml
KLhUrSJPn90KoqIcB++uciUJaSjRREXU5TjKPffJ1LWpSgj/GxE8wjfZL6FafAVNpWa289TCQryt
foViYfpCzY5J69PAA9uMqc6A2t+ayXOmXKhy1UxYFgEYsaW47+ogEJ4yPtUKMqy7CwepiC/AHU4H
gOY6GF5ubrgMZkBzc51o1SbCeV45tO+aVTQZggff6XFHCG9qV3E1oO7TUgvbyXTFiikEdkJNj69m
20r06fWmtmDqSEw9vDd/fGJ6FCS21/eQyTCR6W3GtqPzjkALmy1hvdZeOOca48Fr2d68TTP1+vw3
KTw36L5rRRX8CW7fHd0PGdg7Fbg1uFWoQ5ZCaFMV2K58MXKUASqX+QiA6PwIDcPLEyTjp4++kNVp
abUH4Y9CTapLv3PhDaVcJk1UJHvGxRwCBUAfnjBNcXY11Q0E8ChDSoUMEH4kz8xNq2mngTOrZxTF
q/TSmz1RIVBID6jKjt89MpEW9biDI0A+M/Ev1lWuieB1mxni1LXHhJz0Q9oH5A3yS9kVe9ozE4jy
g3dCV9zFms7e/N4Xik8wGWP6au5OFXZcPRTpIm1jc5x8bBi4sFPr7c47urY0gcsLNc3fApjWzTGH
6Pqx5O7QEybgef0xZcidjSpKryfdoWPXaakpNi0d86W5LjEN3C+6jAzYnAkyHAL4l/d/4QcoCbUi
OyQYWbORVv3NRXpYsxuSLYfeql9WLfCh3x3NwFQscYpPmFWzlXY/UE3UMlHJY1AGGvrK8StF+Szl
vnKatqPLgrGsj1Xl5B5gvVta6EPr3eOqd5FFkIavwuAXhjpwqjDY2B7IPoe9EZFBEKhUGwyGO3D0
vHzuMqDYrsKxkzsAxk7oj9Zs5Lcsq6QXrXMzLwJuvYMCeBm7fW7VbF4C1tXKdimaPqrW3KplZaOB
/3WNOLUE+nN76N4fPQzCqnVeVUvuALsDqMtUqPTnwgf1qpFTyqrVCTN9uNJFmKnfHDK9NDXdHwqW
zsTqczF+OVZ4zeszYbQEJ2DxaNOKPYG2rS7yVp/aNTizfFnlOBm9SvjG6Ktob6TsgkzufXoT3+Lx
mQlc5TapEq+ptVvnl3YsROox6URvFVPbA9SYdhY/+DaRTuFpTnCY2KpNzNM1couP7Uv2TNAafCGz
ZF3BcTXu9OqNyldP2m1vVjtcDsf+eO9qhyQliXsKHsAHUjt/1z0gekw7El7INWvVyh+fcpG6TG9p
3QVKQhm55FUC5u5bta8ZdhQmPrmuaubCTDtqg/voQJVs5DmvQ/C2rpjJ8i3YxOZmL8+Eg8TXpI2O
rP0DfAalrYFo+kxkpPbCTC+WrBjdFU2UCbXql2SEKJPGoqzfH0ySSddxvyhFjokVapM58S/mLOjw
issxYaFpzKs/Z39czTFdaFP2GG6pkaVCaTW6P9in4mvZx2TqJJnu31/7zeKyXvxT2+sH98yKNNPu
4HMEBT/c5a3RE6dJ3+JOmolbpOvEujRTW42tXiP/+H7bm4e2Gk/r8vNwP4TaktlX/KN/gCpJ4aMP
+HLXlXj3RPygq0SGCZPq/v0MEi93/QXNJ1vw3aJK/EMDEOfVUpz9gF91F79WPmqNn/GPd/Nwrh/3
1mif6Ks0rl89UVrJXt1VJSpomqeP+mn20+Ruhsw9lFtPK5FWErrqeqqDPkvZpbsmq+ASIaMfi8W1
mNSjxVvGakmp3tLumD+oH/SWDCGuNjqJeut4yrbJUWlpZym7vTUO41/e/Buz/QnM3ILb0Zd1NxS/
Md4PPMSW7odHBJWEiqnG0uv9E91u344tcNJFa8lbwzxJA5mOSGn9vnKTkyPlGVdgerZNqi9rzFbb
s9WfQGklfKArrTw1nC8XsyRR14ZZMU49ZtFHQjeDIymZlFJqkM71khoEbl/AsUs1pYai0D9qXmvv
5wwJbVunXYNfyHav7F4P+3Bo7PT+yNU/lbZvdM8lvLJ0q+WyXi2hMVrxAH80/KDb/90jIyhyy0E9
2od65aTdcerP3GBpeujN5ewNHbW1Lzw7nfwa29v5p+cVwdrzy1OXflg1ZbYfP/qMCiZdo1cKbhqK
Jd03wHMR25YY5XyrvzepJD9y21UUMzqme7AVGZ9GraQ2VfhAS4VycVV2l1HC6sC1b/0dXeupHSiB
17hgcQqAgoe7x2SvV4voxXV9kaeFsQr7abW2ol3kGPfD6RWNvr4uPHX7j4szT/a3u9sDLK5qojPD
mGUdqAO+Mr/fgWyFibWumeDOLjhMbujdps8wn/DBtziPU7vCdzCd2XVDapd4+Qg6wUIX1OBy7W79
+oTvAPo6875T0+vegsc6ZD8taflCi/i3b9RP31eeXUQ2tU6M+JPN78bwtxFT+XVdFB4GMTM/b6BN
j0aKsppGyRGA09dnmGKXsy6NHzaugwLtEazYzq7XbXDqod9xY/BWQUaMRj1oIZ0aXlTPhOUo986Y
MGSSVGLoGrVf3StC1umB6wiziE68K4bcdgld9eP6Sd8tdmf7IjIoBlj5cJvz7cu6UXMg7xCbd7KE
Bdz5GftwXJuu+JzbfGyeTDiPpIUtDFbasa5nsZ655PY1/kW3//TRHTpoDMTVworKCF5XbR+6u9wE
NfnxdoNnsGTyamoEnn9q9mOw0cG6IbNi00fznmgxqOVvZa4Y1PyF8P35o4+VYWUTsTxWGXGGZXi/
5djH1ADI7FuZlo6MyV2YwAfzsZ1S9H9F3yY81igzdQmnByJczv0VXDjoyc1oy4+4s4dC+8AH2D+U
7DvwxRaFfkleltfdgT1R7YG2J/ojmPTlzkKEvbAAM646PTIcL5T60cZbENlw9xF23djgdrd/qkHw
FN81RP8i7b+GL3cbk35fkWN2ZRo2ZPap2p3xahI8sR0dQzfgb3fHFWaPGgTtatmpBvFvXXcZVFaT
oF1f2zPc1s00uJ6jYhV8/xXW+s4y6N/JXL/9I1i+NXdbyXFcTepa+gPeqB+h8tSo3ZAl67dqQVQt
MSt7ra53yfzFv6UPNquwcycCjIR2zNx9aSKYcnAEeg3/1jXKhDjY4BlxwasWcQ5kw21ciNTVGOym
3XLTzvaX52cP07eFNvoFopkInXEexjujAUZVjYQuRECh2fGd94+phxw/dK/nZj1+ZB4KY1717gyK
YYBhUFUzlunR4LN+pGhoR72rEsbefrdJOVb4ibqQ04if767xWnhE5IrssF/Ws5EGwZNNktQmiSz8
0cbcbuaDZbMJY+f+M3k+O6LG92DBmGwBdkEoRdmhb2qy02DLxvXRKlLFhYlZsMfunPXH1DGgK9RD
GTj4tBJeGrtft19YCbPvNh9xgjBTf2pOUPoe9H5+833C4XCfcHi5lP8F9H6TKLV0wzGtsnmGTsN0
nKzMU6zDUw35W4ygozKClPqj/6GcoKPLmArrRCKVEMiHBMRKGbp+W0FJnd4DeeNdumEqkQi3I0I+
6cHUSYLpO0JDoRqzpDDszrSFQERuIgrU196SpTGZAGowESbTRhgtWSVFTbNTNVJiRreHzcEYLaHT
UXjr4uYYtGdiCm8WhKDvFvivL9eTg1m4+IRCPbZiXSf+ySo1uA6RxuF5nTSC0BO+KXHGK6UIjsmH
9/0HlExYfw9SkQxrl5fO5RXePYC/PJOB5Q1B8mhd5fonxRkhMyyYpCJICYTBlJ9mC4Bw8SkEQMTf
k1m03TdTSUI+sYH0eRvr6BECoL9YhlcMtUotUC5pAt//8ycaNvRgNX3PmTyyyASvj6IuSisF9Gdg
3nBNw2TBekvPQS7pdrFvQxiRjKO1AIUqLbjKRlBjnFkzGqQiZal0MltzL7bQKPOR0ZaqtWA/KjMs
u7LS1nX5sqUAbcpMKsoRXVzp9taVjVQ29XjN0ZrWjydI+IwJQJ75q7O0R+YLfaag/EAyvRJTGk9s
MMYeIwKOLvUwGK3IsmppglRnE127iEhQ9CN0oyxmNK/DATysEvGTGgfgkrPKM1vqlXzvGLrIukz5
z+WUciL9rIQhatR6pGExgSWlllmWLkqxAkO0vkDQXW1Iykti8FzaiJELolrTZ61tmgldBSwKr/0Y
TbS1I4Q1KdjIwDyfVZZl1XWGey1QPenFmID8yAr0LFMMIj9hTTh3oaJgnajiGTPeuMxAJoXomay9
VbWU/d/M4GDtkSHk0pwsmjhXh6YITFrQS5MmGSha6pE2iaRqkv6b/ALMhqqMcHXN06SbL6wCLeaj
tpRtnQpmUGUFHcYu/TAs/Er2P3Qhs8pUpxmgaY6irPD7Dl0gNGEqCf+IRO9iXKpRfCwmhtYw3Ps9
/pcyn80NLFoWpf+AXfprjwInPGapWvwZS3YG8uZyC/W7JqhDkfB1YAhKMLrP61sfsRBJ97+6Bhm8
Ykb419utUPLXURlg+6TW9dF5/+31k1IrS2lMokE1wFzZFK//CIGOONh/agiavwct/SMIGhWCpnsI
Ovx4Jc/RI0xFyTOZztektPSSQy8vMRgWpeBnjU8phu+PQqPilvEdCFUR73kFQiXwFJ7YDoQmkyro
QWjMDZoaRNwgChqISHUdQgvjVNWweQU/UbQwWrLBz2gBjSG+h3rJoGlq4bLRNPyZjwLpzE61YZsJ
6HPvrZx62Hk0zjvTvxffYwW8SkijSUIoWHOwGLiuVBkCBmAQ8BWFj4Sdvi+C/A5BfdU+019TXCUc
BuRswJY0/KlJbwXVSB0NcWrtl32NJJrSsdkh1qlSIslSEpvh3F5OXc/tguy+WIuXu7gypakuwBzD
HZ+9Z21DSMSUIvxnxAbHlrMU/V47SrvqMSxbOsywjG9mUKqJwCWLIwDSvOIofr2A5BQsilAz0Rvj
UFCdQ055vd1pJoJLmodCdHXOYmYSzMmR3PW2BFKXhJ7EKAtMVh3929WwhvL2m4q+aVGE0glGcKJD
dtTDULe8O0QoykLQ6/WMAD0TRYMqpznHRl5nkNZAwebFos7S1PQ7PRP2YFLvQauWrSxENHUQL/wZ
YX+B+hDni+lxJZiUCTZvF4+oHUlP9x+Hai/u9T4QGTtRsuvS+i11Sp4IXN2ePJYWaqByW2iZLObG
WH+5MPnsm19QTKRrmWhX2q2qyNi4sOeL39WoXyZ3BtOouNiBnzplzxe9ax/M64I4A9X3VBOb4T2P
2OUCpUW6MHhbUOh5RBDg2A744NoQt7Ob6ZNFoL426ZGB1EcA0BfkHbyYDwa2gdx0dzvQAQC6vN8M
jiYyprmFr5AAcRMZZK0gvKsqdo+evJLyVsnSPLBe00SM+uz6HyZspXFEtfcOK1QJhkl1MJTMMJkA
iAbtI7OwYcUJcvzFbw2qYYvipcHTLhd3iJkhqtoMj9q+09o3AB+a0D4Cv5et2Ko7UFu/Sz1hPyms
r6sfldeQup9UgN+maiuo2NTntP0kL7yMqx81oljX8QfYDXFdPzVyK9/DeJg/QG6DaIOE+wxI44+2
HS7Hk+mCjQPDBMOC20ppKZBqcnA3PZVE8+EC9MY8PJXpmyquQG4Cxs71HWyTzf9DeNYpgodMtYxO
EFwP2yCHACHE0U1jykQZXbVq/Br1CBzbvUcONr1ITy3Jz1JsfHBL5MGOsGhSrsyUYcmSYnZ596uF
L0QS17g701qShgfXJHHpdTV/iXqRQkDXdk+9nmufgCkiWNFV0VT7zJXBXt09iGNYBd3t8FKtb9dx
NbPmYHpXKgi2t6Jx6nIptesqi5amYiZlIR1F7XYX/oLjQ/PsuE0Fkq/wf7WMKIOLgd3eim+4scmO
SHPZYE+E1AE9KZybeGuXOUeD66AG5oIK0bRvgfFarqLE2ESpRrWiCk8N4HUZn4oFJ/oml0ydC/IF
SApiviTXx4qaesdameWZMHRIr4klBtoU5RjymuMLlG69tsKWlyk/32mOql0qDo7ybi0avbhh0aKy
U4N+UB1uRqTZYhdPnREJkBJR7rdTL7NKy+LLrUtOHJp8a5e6hIUnE3vlYaSBiRRUdhvFRMuiyNC0
/EMqYBHnOyPT5PqtIsrZTAHZ7Ypvzbw0z4b1js2dN7rMyM214WZTan14Obpcgscnfv70enTPX0BS
sGS5IruybgyWUE8zpQTmVsoaGtt8zb30160pwbEpMnouGlcbzntlxOqLkFs+smEMP0tkff0eJoyP
DkIIZL7LRfLjBTLr89QEMhOVylMZnsTg19kvWlx9oU7WNzOR3B2AFlz/+dOfegAiqnrqD0CxAYzL
9kG1TDn/AKIrDxw/AOVWqdt3dwDK+VEhXe4GiMnPRJ5/vHVEet0okPlmoVhygNkR2DKW8HLdzsBH
j/hJSArXn4SPGxqUs2zOEtfbxfUPevEvfh5SieOt2BPVwvu31NgJlaruTHRi0ju5i+s3kz7vzeaS
c6moaNkEW343yoZnOz+Xy8/Uau2B/e4xdOUtmvn91Ro6rmlN9mZignYUj0bLHpNN2H0EAZ0XSBp9
RjtncApHd7m5AaSaTBjluLxsU97qVeyp1UkKyGiFg9s+iE9MHi32mgyWO95UQOVo3DIJSzThrdCu
rGaakNseHKWwgdimPMs8qXYybq/eecgdkjoni6quVT8XL2TW7H2CZDN9QOvxaEreTE+Sza+BI1C1
HpU57LtwNvsDMmJYKrJs/rJq4z50smQQV2v5QKDnoA43v/Nl1GB0px/eiuSLTbvWHRA8Em+eeEWN
jiP9bR1Qi10WE/vZ/CDJ2BxqIWrKl6nPY+KYA1ZB9bo1JUjQ0phKkDfS7cUcEkzSYVpNds5H87xt
jnc5RUwic3CalHneTDM2mJ3ChfKsbDsdj501YODZCJ2dJhqLjHo8I/fuWoSClBpBPC0m5SsBbxg3
+XqwWz91s7rRdCnN8f7lic62d1lpqAM6uam386wtB/xETxx8yk3TFJapmf2z7Pc/GLoJZgTx3kTS
9zx84xMZJpDNoYO2U+eDu/mLYMJVA8jt6D6pqbngXtvP0NnPyOXq4zrRFiIzgPFtLYl0pSOue3du
Vg/5ZMvTHGDuQPSPXMU+AjigQP/UAOd75Dr+G2aEWdOEqtz07wFOGH58ruOWyTgku+qHp1KHLttx
LwQaM8VCy1Oex6eU/4iPRoCOawctK17v5kXPU7FmwkNzVg+NHkLCCQBhBGfKNwSDJEIQjBJPxQDs
cTXz+1Kx2IMPGJXr++s3DkikdNd7Y7UbPJKQBBqmnWQE54Dsa37CYksNjGHFTrjD0RPm5m/h+RIm
E/XEWbWHwrAc6rqfCN7gJuFCGNQZ95Qqj2ezq7I+hTIw8A2MTU2oy05XyZlRFwzxBcRMPbMKN75i
aEs8Z/tOtxhSoOrjAT/k5IKdo13Jt0cLMwqdOrexPYoODXHHwSQ7g/mIJhKBnpv8tyv2DJQsfqTY
SYDSNzEIfTtm+uDN/GRKe45I1ldEVFthx8H4TrwAM/0CBdLdSKFiQqaaPpj/g7nTjMfK12a3CGlB
EbbjHdyFtMlLKk34ezbnR+l72AlDTf/zcXtzehMU/4A3rt2NnZfw1/2+kzpFnsLJST5uoVILCGHH
1i6a7jfCbeDWU2YoHeSsJK4FE+puvJ3s+YvtkK8GEagq1+eXJtY40oPVRB7V0sYb+dnA+3JIz4Aa
m5ZeMVFMaPVuyYiscqJyKvFCbtKRZPm4dRm345Qb28MWOqDG1Zwo7pZwnc/NsZcC9IaWvtqG5hRv
dEuUFSdwXAtm8wsynmdPFwRoNnpDTcsSRqVkmagfN9wyirWCMLJPGh4INvb+9gKjEoDGxrXQSbCB
ZWWd7Y4ww42bCE/JobM3ml8a+GJz6RiQbvUCyHBmdcCF0Twsl5UVjlwfx2DwveaW9nZofCkFGMcb
HcGv+874Mnasn1Ob5swIU1a2F37CyHddv4OQVG2lrHIp9660QbME0bHisw7p3JkL5Xrz35Est+VC
OTp+07kFt4ovfFByMk3VSztb8UQJ0GeT0QdYG436ozzYY4cOm4/FLxxL+Wqcn94Kp4kaC0HjtXzM
nAm8uv7UqOx7pMD9EJUlZc7cCzr+BSlwQ5NpfEoTcVmJQbOylJ42Y+apQNHH8Y8Qtxsck1P686ef
EI5haqQkcGe8g2PK+6S9x+BYrIYx1nCsmEBiUOsz3gCVxvQOjjmBo8GxOEDQ0eDYkXDsbOHYS1WA
vcwmVizzie4XTeDbjT+Y4HGEgUYiB1FjCE+TXRF7YUeQfKNyBXKHxPzdMyHX50+GRcSINzT7z/Zo
oBCcUkVi2OBiMjpRE4azkjDpTKRoktWjGpBhct/IydK1gXCvUGx7OznduxGu1cjupd05srfeJ3gB
uTN33YGXM6ft/nagcG5ifRLE+Um8tpxtpmaraOxovIo+p+3exRoDmipg7GBxAk7B7mxXFfnSe9JL
MpZMC/YylVsQuzuC58wRJMuaunWlnev0iFCC0fIRoYnFABnlgXDuGeH6ZAiSWBGe9CvfczRbKGUp
naEmkH+ku+TZsvxuz2bnCq7GjpOduhDwxNFBYoc7acVDM1+Y+j8xGYb07OnMJktd67TaDq7pQbjv
jGIUc9x0eWdys/+8Zq8feOG0ASHEYHNwi9RAD4ridvezkcSTlY/nAD0RreAMR/LEpqNZzSJkwkfR
akQZ9pMPU6FWozCFIUJuQVR56ixC5852xDS3G6f7loFoTYFwg9g4U5UJc0MYbMtjQ063cbKtYZas
Tnbl2BtpnJKtsNKnjRpICNDQoVc3N6UG0l48QYSlVglceVr+o+y38Wc5u79H9tu/nj7KqSbp6/M7
i8pfkFcl+6Fs5IkYh6ecevJEML7rcqaHcabhJT8NU30KfsLbGX7RM/yKkzuBe3Stnz9lY7WOcoTb
GV31uD+B9Co38Q/PbPgNdBvPo/jkq7Id9KhboHgiM1MOiLmluW+Gh6y70KSHv62bFLghMrOtGmiK
n66W6R4FqQTkF/elZLW8acGO5mRpBAOixpmzshhlQ499+K2TYmxnQVAfC/G92bK+6aF/Y+pUqrym
aDlTQJrkbpXdb5IZXq3ghongm6iUrJ4cCHpCsbuJR/8sz7hf6LndaHIxD079/4h7l91IcmRbdJ5A
/kMNBZRS7Xy509G4gx1TAQEo/kCKUEg48wsEcLH//TptrWWkR6r3qZNdnWeSCYT8SdJJo9l6qFbT
Zv0GLNVZQzCgFFGyEITuLAehUFMW6Jh1dW2Otj+kSPAraPXo1EqUbHsHoCIhm52JhDUy+ZuPgVX4
CSusYDu1XTpKx3nrAoZe20gqLBQ9ObojGXBG3KtXZr91dVaW6Fp8Vk6KXifR5siZ8VEc7FmYZgM/
0O1ZtoNrP9hhErIJB96ViZk3/hijs6NYYGc+rupgOHcAHhjjiI9oY1+I2ezpGdivUQTc8bHYbCuT
sB29Eg4rDXBmWXaMjyRt6GpLUdwfCpbvVXkQLDixg+mi0KOEwO75WSBcmavKw4H6WdUi9UURQMdd
uCUaUJ841Do7se+az5MfK4CE8POLVl98nZ4DoVpxcjoX6JRrr/34jrtb19rbbWsdGB+gIXpa5vXu
eOxunAyKddrr6Q/PPbmyOgb2IlFZ2unOXjhBQoCS0QvByXeP4ov+8Oyq8fi1M3fiXvdR40HH1tb6
6+7aCh6Je72MBo3i7th6z9zx88XthHL3YTl2r/tZPCuhRwLSLF730SfWcyDRn+rDnYQyS0J44cFs
hlmZZwoJPJ+lTMPnIfLVDWSS0jOvQpkuujp69mYHK16x7jIy1nB47FmZYzeSrd2f9s2l4YONMmJd
XWygOhlr0OKeMtHIpGP5V7EWZWVI9lDDQLbdEzPWwA9H96GsSfkZj47nf6w9M/PZo8UqneUtMKsM
ro0YwaTMh8qgTOEEygnsmGEuvAyk+O1TvP+G+CUXC2rSbmpo33Bhuu3TuVERaLrGyPq4daAfWVpP
NOgcklCNh/Wpwv3SWVgCoR89f7pYLzWZlQN0QM/a1FSytNrl3T4LVLgmu/zswXXioRTk64kpHNs+
2EE9JbrUct+iIH1XbLq1TjvcPhfh94AtprbCHpi8jpOlfrJLD4DBiS4q6IfdT0+0axt+NFxhufsJ
a4Mmi4kGKkjx7n5SDvZ34Z/T7/BF/jKGz81QJf4knrAuv2yoEp5WxufpsYaiwuhjnZbH79+WbQvl
ObjoxVEZKOf6GOpfi+G7pcq/GcNHGQBbEG+YFRbJMojswnIdX4fjCeVCAFImBtVujtvSxnYNHE2H
RQGLSm3BngfxENE7Yv8ZV7dfbHBKzdpzZSSILB53DZMKkFEkLJUqZrPTqw7huixjxUVx25DKm5Ps
lG0quspfJTMupeEx3nfBxkTpvBcAT6OBjllRZUxSiqqb5FIsuqoqp4RDtJcshqHKHcdFtmDRPqBX
b0rasdn0BKU9bbEI/fs3nJ29iowa3Ly/5Np2Z2/DxsLpazJYaaF5QmHOYr6oY8uQwBvEl6PBzmYE
7Yz4WjMMhoonEWOiw70sC8v9GOpbrpPAyS0qvTuYKSZC1c2n5UlwtnZV27yYl+KN+5Qk2Bn6jD9H
IRNbqP5KwFYSPzNSpQdBTlwE6DabYzRPCt1d0cLepe9nZgK2EDkkr8MuWqhx/8HgGMYrKFrGmXIb
CNZfHPeNZwZq2W1oophoLJ++n9VqMRKYBU6+AGzRnGaCJb1gNy6cJ0CiLWA/nfXiae2IrdPNCZ6h
Sijh5GCBKLCAqGt8wEnOhdhtacQiv8iQXT+z7GXmKg04huBwOzpPnbzGnU4MKu4aftIvnEes1k1K
tzH0Oilytc2WT+09DRk6flOTxFMsaCdQYoXog1slAiK+/Qx3TITrVjYnDsNUPZPn586YCFosb5Uv
4LSSObDRaXNlmKIknU5YGZE33hnYbQi82jPZLeiaePMYfP1H9XD9urOJAR2OdLVPODIvUmVcjOAW
HVFCw0R4vnhB9UT3QjshMW4fxS4DRStlm+jmqAtPkPWVaDFhpamMrBPFrJGTiu+EKhTepKFgUdvD
6VUyLC6kcJQ6tntrrPyT3tuuXxm/t4U1chtX1s5Vg3/pM+EsE6T6LII/g9UjbSB4/FBS4RW9+ip8
60z5BG2H3geXJY/i9SoLMRcLJRT++KRGsjqjyHlwGt+l4l1aRH/81I4UkqPUVHglj2P9BzLz7qQ4
tBKAghRWMGKivFLZVi2Ut6C9bTV10mo9QomF1+h9x4D+aOPFd4FF0hH9i3ZcxMy7FBPGse3HR9m/
dSelOiU1/0PGKW77WmRdgg6/tvyi4xh1PFipf/Irw5fBGP8qaIh7KR4Eo/lwwxJbDhnhX0eVk8TT
1t0NIL9bOlWR5Qw7dp7EE+03ANeVmom7GxS6rwQKlu6fy3KFCv8FpMJdopVU/xxu4z4k0W+zs3FM
yvocr26NYf0nxUQohEv3z+adJpqI2wwPJgV0Wqpws5J5m+K0zH6D4sPQ6KuzD5ECR5VnFwPDiKKV
ynX3dTd1RG4zISrforh58bHqbVrpTVO5OfOvO3FozPy6yzjAZyMXgeDbjw/800834VnL1CcDlxif
7LNcJp8C7x9t8YLLTtHb3VNO0J56LcO3tF0wssb8cLi4dDaux+88DxPPjB5cUt+irswVLlDDOb0p
B4GL5LvZcDseZa8lD5d/i7z8QocU4KZbEuRdf4Jo1FKGd/HTcMWZiQ0/KbEoB7nEk2XGHLiWu4vK
wXFHebBPwU36RyWTlEG0SlpPS+3dcnqtfkKAcwpTe+975U4oJJ72wMXtNFuL6tTrf0qZQhtxP/Nm
3KUG9ogVjl2KUd4qdto4RTARUgf+uT+cxV817pqseJMl2KhwCR3eaTRRud7fK8JK5Xgxy+xjL1Iu
/FO72WWcLOReUsaUGsqUcFI5sdKhlZT6pc1RpSeOwL+v/dP3dtZTLXoXG2x3b7NLoOuMKrGuY89w
Rf7lyZFzvv5wuq/upLQbB7HbqQifJs+UbQ5I948V+bcnaR+c3uSi5J4qu/nGy7QrbXRn69DhrAhr
Fch/Hu5cydeuhuUnyfMkOY7rp1da6YiNBt/fy2W0jy7iWQZ/la0dMOQ8HW1/K2Ov8tkIpIh/jIfL
QwWjxrKCeyXXde4Tr2YQ3WVxTJHTL2CxcgIqyUePTqgewBz9q0P2mU4rXUfMflz5Gl+KCYSp/idY
lCn8jpL4Ov0LFmW6F4Kqv14RL08zs2kQgTJSQX7aIurOrSTILa7rY4z36gFfJc/Anjwbwg2zzfdv
kHxqCbQDcmdv/2PqjMCpBDZiMgKkSkXRMv6N02gjAgFCotamZc24e86sOQCxboAZKh6l4MSCyba0
nnmL3cz4hT+nqLRNEDnu5SyD4jBA3yCluQ3chXVi5oUiqTDd1jikjoI7XnVzh7ohsdg4BkknFGbT
njocL65iJWavVCp3GNwVFymAAhvlIoRRjCjlqfTN1KO/aat894pm7CSERgvkhwuBlQDtH8LgUJ9W
AsR29osXv8m4glLrjNI3t746I0oVqyrbJN/eJrW4EvwmtF3wUjwgjTenw06DBKlKVkHKAkipnW/O
yyaHIQzUi9CObbGrOJF+bFH1W+qBjcCgkviQ2XT8lZEShELubAeSIR2EPzN35nbMSudEQhr9SIiI
tk2bYIuwtA/OgBzFHCcvfb8LSEb9q3nI3E6Eg4uTcLO4TxKtbutMFMP57lkqqQODuqTf5R4vRWUG
mBo7eL+SJKl05I7rliaApXHo0pkJXZpzTlII6MzYsLhGQFPV7sqC1WvghBJmip/SDOXdNRgWzD4p
+fYHCLSJTAVLDZvK4afW3iXjFC3LE72li7Jqw+Xp7QuNw9CP7QbG/annStwbV/tBlHMa3Iuvchl6
jyqNoUzZsmvPn5aA4AKe2plRFXHc6qG9jlbkSjAc3VXGm9X7hqqsf+seH9JdXXuO7eXijhV+k6Wq
OH7/WjI33t+ozmQnSFN/gnx6dgPja+9oFIZj74mJ6kpDP38ZOSzrfwJLl+LvqMN9FTgkq8PF+zpc
/vU6XPLi2vo4TZSGXB4XU5Csa+1luOwKkoXluqU8lnn5q5HENs0NocQfvxZJYBlrM2QbzkgyJ0MQ
x7ALJKIIMD2QSKQhEjh/I07qiBgdJ4RCBD1T9znudCWl8OiqjzZRYb/FYCJlgeP7ivOAHYKnvUP0
CASBdl4En1MZDtTLVSi+rpmcncOYemwQViHscgfBZ8VSAUZ9+h0Fhoj6G+wGjlBSSwY5DPE+npg6
gRFrtjHaudab5GLpgQVWHIYVKFAoqniF8LjOLEBwi+h4vFDxsLZFO5LpSCpDUD/UHiLg0Kj63KvH
DVukRQklkrfVSCy4WYlHQRVocyQ46rqrqk2NInFShW9WYQp7xrOy66yMRe+kKDaeZBXy8LQC1b+o
XNMqEva4gtK9q9kjwPpG2OaPQWEORaMuWUOFa3vphCHIYXp97shroCEmCSrAZa0RelkinId4Fp1R
RXEM/AgZMLDf9HYeKkCT3LpC9SUGEGfn59qIMmYjskBvqoo2a51en/NYcGX93cKI916eiTI+SupC
KbKHhVRGyUO0hqYOehifxituVp97UzIcmTWvzrn8bLVpwspzbivVmi/2At3z1etWC4FzTfz6z54H
2y6UQarcm6m9668EyBfdRcnGINEvKU36nQqLcryTRfdSTkHJK3UbTcHWxHZ8dTQkpB9dvgZhPQBy
QdKUJn9SVdBKuePsJAIqXHGLJaRogu+nkx3V/kGosqlTdK042lUlP5w5DMxXK7q+9moACM+IHDod
GLoL0aPOqOPi0HJtoATW3bZv/dUNPbFFyDujxKpjsxpgWz+Ux0H6kvqRV8Xjforxxxf5QJZBOvKn
q1uYv5fwtGy6wHSnvgdI1DDv/bEXjtT4kGZpq8MdP1RluIyGOMGxdB8Dx7egCnfqqE8h654cdmYE
X5vYysRHn4g385rbka7bzrqBMHgTfkVp5dLlxWG3QUDddax1JfZqscm2v3Hp2uYsjn1UnRAdT3e0
GXfAdBbV54bxkBgcWxWu3wI6JV5/Az4sSfa8jFjUWTA7yyxahfKt7GL1oqK6dULeP02ffx9Ol2F3
kFB980HkN2JHd9smK8YWY5h37vHKopxNkp/S9FlVc9Nw7njXBb2wjo0TUM1thTfYqrSn2T2+kHZd
4Q11NT73ztpr3tkTUQG/ldv0MJd9hneOw7fliXRmUFvRbWibalES623vEKXtxsGR9TanhesLmLN/
YNu812X2UVqDLkD3/5qHmhs7YOsznbWwvuYbVFG15zuTkEU1N+ZmT53xbl05c6GNu+y6V97gtnn/
UOxpA40/fNxaufrH8PYr/qiRtPbi20f/GXWnSTBzAYMTy3HD3DWhuLqQWSIX4MlkdaOKbS2r4oPX
C23UUnTfuzX1QpsDYC2+XZKPjeHwwj/BdmLZnSAw+xe7QzCs//bd4e+wuPqvdf5id9jSyvknlGaq
v5xXXlymVvTnOj/Oed5J16zdgiCtrlIb8/Q4hfSXdodGtGpc6PdF20NiNNt/fwmkyW8pG8NpaStR
7UBE0Hea3l0dU3slcNe18tuyPSICNvsQJCVdpnbVjK0hvo20SLx1JFgBGkhdPdyGyd9kororNHAs
nmR+Iy9K1oLMAWif4w7tG5Dcbg4Dy+qoDzKJiRNc6JqibNvOOC5KLR/etQuOAZ6piK+r9tC0Bgti
bz68XLSjDUiGcVeIvHVahU6dCYkB0yt1ZOYBVTUam2I/umIvaPMr6WFJ6XdKpSzss7hoF/giXYRk
HNPg+0BAYpFaTkXXb0lJRIGpSqmHmauld16kqYDAl2nltalDi4kkB/ZPyyuTAJ+UySe7WjDNPJPj
ZXllMvFM28VJVQeSuwp70ihVwDT01gZ1iBbdI81ua99o629UhwoghIbJ2hd+DnofpL3b27av69M3
oxO52E9PEvuf5HVhW0OsWu3IQYLWnQWy/LuMKedgkYjH2LsNBCoRAL3Zj4UQOeX2vJ5MUOnqpX74
diVtCp1hMkreSAHXwKfVt4Nm0HgWKCB7fvkkJpx9PdFJVo5yS5VbleijCeUE3xMePqX02J2tXFjN
9vq+Hzw6cimLzt2ij49Z6DJsyJMwt2Jz5C54ox8riiXbHpab+g8Rwn2P1zSUSz/YxW4kEW05BEE1
T5dhp4LNKvnU9m251ySM401ez0WUqjU0dvYeB2RE75ZEvipzTiI8GY4eVOeeNv5AbmhgwofsIM2P
Kj4GJBfzThEau3fs/saLJ8IvgRiYyFBvbZdHrYOJO/0Gyfwc9Cln7f4M8HLwsjwciW0LSEzD6W3Q
EvA94PGMeG0fw7Z94KUMe7ssWRzIQR+6ODUyCqPhdWIXYRs41Ieyk6pU4MiCBmfKiDloJpI1RTsR
+LUlB2K+D1WhIAoVMTRvXnJYCc9ENs7T8okbvlGRc+2bwIOjCBp0xzaMgeXG4e2Ivbx1DqPbWXkF
yo+FR+Ag5CymFPWdp642gH2e/+zeV9kR3NCPMKAnSq+u7yiIpaOP4s7F6tDV0JesHd7hrctyr/bB
Fap4u+AZahvFRLz7Ffjbk3OvjRdGUy6r0tUxinbClAt7w6XRtnXnZX/oiKR0ME47xRGVp84xtOmH
WMrO9Yo2g9mejsyTh9PH7NvAYWfnsu8hCi9JEPPJzTtK39m9hf/nZSwktxMJI0x6rodtuOmPI6Sy
U+UCNgSzQeKHLlj4q/XAm9p1EpKyK6npp91b48fZSqR7chhRdP7Z4telz1D9J2v6nbnGXPd65vrx
6Wdq2vo0yLfqJ8Vwv8+GI/0OA7UvNzil/LNd7B43U351f7OtXLnLQEU59E7lsREWOgVtC92i1CRI
QQuPcboX5vyfQDRtXv93NzfJTI1aCtzGjKXN2xanfQzF0CFxj6ZpJDEVwY6YSIpJ86x3G5ymQRDp
4asaRnGkBnAWANFMMvsNrvHSmFOTC4d//3Z0XEuM2ti86ZIpdMFw26mgNNZIS6uYZgeKJp9vmCOK
7zTcUwNn+N6GjholaZ/W5aOAppn/qCbbZOoRbxLDYHmM5CUe7SWlWQZt89LxNE8d1XMAts4VFkKv
kMxRL4q1l3U0VZVCr5A8HEAjyBAQmrWzYRojrl2vk4ntsko2A8kaTOQITuJCTdW2rYHOhm7QGjH1
3c07+bgxAiFj25uzmyfNQeITgRs5HRxU6gJAQMLWOUDiRNoRmJKa3IaQ2qSaJc8Ph6XvgXrcEXy/
lZWoxlZBlbNObUYtxO01XE+w0FZLvr2IejtkZ7a9efJsabIsNXY3z33HQthOt7aRdLv79g4CpRMF
JDy+QfVCOxuVpCAWYlUvz7HxSJQqu+opldCSQO84dh7Ew5k2XTmO265mSDROnYj24gTpym8ala7u
bJJXOqthRyEZrLjQLo0mVrv4nvYor3M/mJUu09TsGwcrh1MwCsXGydh8C3Y2CHy2wdLPSHRXs2fn
0mhDoA58NBy6dAO1l67Dm7T7WhhCPWxb946qDbtNDoIGOJGYjMtoR2t9gE+yBRg9ywrvRCOkmdvp
w/vcH9+xMsb0+DHRxwUbmm3udkmBPBa52g1czDKyyoWLNzH8HQI5d6aKRK8Wlbv65cFlYr1ruDwk
zJMu/2XwUOAb+LeHD7/Dxeu/4hcqklP8Z3ux+/xomH85P+quJFvMwLigPC6xDvnRnkJdHrOih+2g
Wh7TtNOS3HYg7xZByLBLapJnJEi3r6SJRRYEFkMM8XXkgB1i7pMMbLoIs344Ur3CxHYaeIaT2jn1
CcQSpo05q20UJtDdNhEAmTYzr8qNTmIg0yzoKmIiJZymofLgwkoEiHUUIw3rg6vpzUKwDvYWL86Y
oMulQWswDegV3eCRyVTtS7to+MUXiNLzqFRGPnwItwrdPgs3aLk5UyMvUDy/q/C5gdfp1o9dwCJG
vIGy4KsbHeCrbkHHgNMhS9260k3JQUNq0QaxH+3ApatTHbtwYFEClVKIuKRblQxwWHmSNDnKd3F3
ac6yt7dQDcssvEgc1KFUpRprRSV78lRKRZ5PJP/qTvLYOO7YngXLgxs9nCiMS48ZJ9lMQJbqbdDo
rAoqugd5VkwhZW/nXcVADvxT56lJYQm2XW2/6rzUaIYRii1eu1ZgV6eS6ekspPKsSpbcUvzRlyc3
1ChYIYwKb9Grr3HuU3K6lo7LRjbLDbygxdivDyBy69HT9SzyGbRoGGv4OCndxEuJBc+KkiR9HsC8
2IMwidqPH6Sqnj+tBO92oouFhi3o4CCyVGNhetViaqxy/vSeUH2m+dwKbUzlU/uzV4Jo2rYB+/JV
0pjcBUSgZzpWdXFPLwsNnkmLEz6MidVLcjt1eGQk6cI/PDOYWBQFkDszerMxvfrs2JcWftsbi0a5
N0NNVVdnJaArj9f7q0+UEf/+TZcXIjGtdxfHbAGVSj80/uGp1VcuB+dwhwQJLJw287Sst106QLeP
TwYkKuQqCz8NqlW9uwS14QSoa8/czSHh2slGhXWalm21oUDFXYDNB/J7b5ws4xLzjvPeNYOi7CT4
oYn4wnMfbOZgFZVm/anl8zK+aiLQLHd6rL7wiDyrCYmdzm6Ju/APT4PrlUE5zJPVJwQp22Xi6dN4
KIxatYxKJKzwc73E+3zoUPKYAkeA8qwu3j+7VJXrzJq57gTmezv44nuGeVGiVSkt2vmR095DiS5T
5TYIRCEgy7rtxlyjjMfavuAdaXKH5HeNqpOAEu6GW7pWlS9Uc1eqIivQvX5nJ7Pblt2Qd12Xy0E1
rt6+OKUdku7D4ZKzUr7TwLFfu+XU/4i2a/oddoBfR9TT1xH1L2fktqFTBiccyrvWLVxuePR5ih2P
PjvwQIm7MIUt+F5/W0wdTGCyx9STajb5PpoOhAgP0XSozFLsounEbMzqukRhdUbcGEwPcbMH02Hp
nrhPDpmfzGcn2GLbo+mwl3t/AXHX/Sui60URj5mUOaDmOwwQNRk7XAFu60gV6sFd9dXkFG8XLSaM
RLOVV0k0hp8H6vNJgbXwYYlmNIZQQLa/4fNj1416ufhOJVOoXZB1teSieNr3AT17d2TxNsgzRoiE
uU/1K8PnBq3z/Av040mRepWGIC/sEiYv3HJV2x/QGfCpa2UHCudbZO1hgzvzKF0x4N6Yogr25l4h
TT1x93Jji0QWGcF46zuE+IfrR/nuJcCZ2fSjjLrvLGZnwrVeacPrhy5dCVP3sgoR4t0y7vu3H9pu
zgisT93pfOoo9Tc6egg6DTeegXYWGVBvX4iNKFmuax2OEg0do/LFwwp/5Jkx9eDRXAaouskz8OAi
rPq4x5t7KK3MSnI5psnF5K0pkkfSMixJXdt1FDRIlJRSZ9sat+AFo3A4yatoh+sga54crG7IzLcy
nDZb5NzwzXns0DJgFF57eggBaR7mOjrpcKOLXc/DoaW8fmjkApL+x+XuFATT18UvXqUqdeg7HKLy
Z2/4iSk2wtM/93tPhNDdFWUlw02L+TBUUjdk8CeV+uurR6WCqtu4noeMXbM8zwO5GH3k0fPzbbhw
FqUNdXnXolBclSmxPdi5ZE/Z9WcpHaLe7XYSTf0gl9VGxe11LxOQvTjig5ZA9fMNaiL9DFD4XfM1
09swKuwtPVMrWG/ufsf+BRGqfhpw2Cui2Pm+JeHlswzQFH+KRZPP0OgWNg+5zTl0pahWSxrHaQuZ
W63DOYxy5ul1AitAI4qd2IQ4NDGSfuJH+ODCB8SAm/2O4wVgEaSw+c2n3EokAvb4DYKikHViQG1j
5erxLJ7fps0WQA8CplDHFSLd+u3q7uaIgPMO5bJFPT2SfmZ279nNCGYGzdhvOa5YZ6HIffM6fVEU
ffoUtcV7atB8fTj4lVz3tduLDQH0yZcaAG9aBG1WxP/KUBLD/28PkX+HoeR/pS9C5Ngomznfhcix
TL+cdHZrgyDjovg4T3nIOa9PQUc8rpE55/VxXUrzQriLj8+Ij689Pj7v4uOPWeFxA+jNXULVEpDg
31cw0fDPykrMZbbo9AWqQF/G02Hy+Ko1kjkFR4Splq0Q6CoaRycsXmMmkDMXVrN7jbmVsqfuUkBs
Zy4KXw1ATsrmoQszTJ1SebhB7ZAUxjy5lXa2YhUyqQuYE12hweCpq9RRzWwQeli6x8rY1UpsXCDI
kkytBrmM6V9V5eVgYJkFSlVOCvMXQtNeUOKNpqY+K2xF1EpGeygSeq3uypTIwUHgimkZqg7IBbuq
w/XiQhCpg2mFPgtJQNDJet5JpoNz0eFtZzjtGWHKE+D6YeUaysSw9AmW0avgwgU+GLbBC85GJXs4
cMWtkidIvifA8R69HtylW442Bql9U+o7yMxa4dTU4aNmWs13X2htSAVUSdTC90bpYPoQzZQ4Rzr4
5FE/j1z4rNI1Dcaqip4QRlZnyACZczV/hPB+VvD6ch40gRxLi+78kOAalji6V78OCVUmg18MYUJe
c4i0yOmKDT0fnKjZwKaOUiQI+0tT3SH6lifIdwdGoIMqUGaulw/BZw4QAUudk+e6IrZISbCBKf4X
NmQyp2RFr6YT1k9z8QbpOlIlLv1D7gYYLkMuOO1ywcPxUalg3KQbL9P5YOmsLzVr4LMt46h0A203
I3xxFbqVf+i98HB4G1iC1G9QC4s5lu67eaUuA1rYEmBxvAUCXPMQH26wIKoMKouwYzLPCfuPXe+R
hy5PfCBEuIcx08vM8HMfRtG9rLc531VCqJOaPbsOBqmHtMOI83hWb/nhNcHJQbeDAElxb8kXrwqu
PRU8tF9CpLvcfSfbBLeSkqkLD803u8ekUhUrTQkq3nH8DBnbvlzGzxCu3wxvcfmXN9cImRXQYtjY
N1D8vKRY98VTsxjNJfiM1qonE397GjGlM+Gng95K5TXj8CznYSgyPTy2ZFJs+yIR6cl8BhjXknhy
Vm2u8g/9+l1oDAF68QjD3WBXkhqL36cplfTPnRGuSC6yeR58Dba7uNOKVZ1afPsCvUYW3ypvgm72
pL8J7UL6lH69i+whKq+823MWTczecotTMncXLoa1nyf3G9WDUHsSIF27/DYg9LYA7c+am+9vMjP5
131lDBvTULov8E276CZrR+kO7xCEzdVwxoHfv83Jx5lELjxJP+c+2govzC6Ouy4mSbS4R1x/HLxz
GdNnyjiMhEs99+xPs1MkAkg37A5d9tfEMDOWJVE1emR+sXjm99iHZQRWVxfW8exQyPM4iRMVJaNY
ekWJj7KwS61+2fsUAtlL4ETp5UL2KYiW2+E7sm0wPuVQjcQKvfDTjfuizqJZWCrHvPj3b4v6lc/k
RUNbsJe8u0ULoZbc79CG35/jTNicHjhVTVAGzZIy5Uj26WS2It0yj0NN8qaW7OaSf7cULvKB9ElF
p6GfL+iOPuSMXrJYdxPmXRiFL9WjjvHQdRzMYVAwHQnzwVRK2/xu3NXDm7Q5EYHXaT/X8oxhVk6k
79fgD6HORRWhfbL7i0ddPO4vDlpHHYC2mgMtgxqkVvoy8CRsRahmBfkqLyzYTdXs30tHfAQIlB4M
U7u1rlQokLCpBNx2KjCyelVEQkkpW4IUIqUYzw8fQ7ozQqVUmlAzSR61L7yOi1VmykRKXYoYILtK
14DPvK8gmzDpR+jXNusPfMR3ArSrQWEGe/YkMVLPW84SG/3DVStMPzBKgfSz0z9m6/0mPvoqLhmP
jKykxCHf1gR0VpOTuUpEnEejF6228nAd2iFQbZR2YEHHZ30RHuq6xujLu6Mw4D+ILrz2YrANtVU9
+HC4un5cQq0D+qJ4HAUUAdqimikrt13r0q/+8PLp6a9qccLacLYvV+91VMdq/5x7fGbColoLOA+v
6/1zEJcRpomo5uGjbz/uL7xMYAIPaNuMGrn9yGsPTWhHx35p7kbab/srzyzetc78CDsZPn067Y9P
Vv36czdYwpR3JDE8Te5v2nPidnTpjW5wkIIf7Uv2hlloPjNoVTxf3Xsr6Y/4IP5ELPVnXwZNNWvo
3cw1p/2IHE4fPQWPVZ/kidDvg/LeVP/Ffeh8aViY/kYTrkfSL8bR2fVFlgJo4STphN7MtMec8IRn
W7UOXZlkhghVCH3V0lIaVEmdob83PmIw3vew/hZCcAPLqYNHGx49JO38nrm8Mxtgf8LDzXdtAaZU
CMMi7E1BB55+n5kPrfWXWYsF7HVWUwsabr6/w+wN5+AaPRzGwyW2L2DXcqw2L73lMlNo9Oa5/PRs
krbom9NJu8dAc83LGLnYs639BhHp7MAy65VV5nH4YODFqTdZxoYsEMvYP4c1g7oSiBsbPoesp4oK
qG3cnH3mgiRHiF3s4iIMH1RWAnkT/XYz2rqlsAhT698EpqY4xGIW+uTh67Nzh5FAnl2QJXe8+yZQ
ogrxbjzAqEnZrTbivsjZI2j823P29XfAWr7K2ZcGa4n3+syh/nLOPq2es18eS5BKxuM2nT9uDe1e
Zocm5awjHf2Sl7+Ysv/DMvbfv/3nU/ajyGIgTHtkSRfQWlZHaw+KhpEMMG2yikg8FD88C61BuHdy
LYVsomBSUN4eEAQnaCPAsIgI7Xc3XEsdRyLPqUnqjaUThyHd4Al6IHe2LxgUL5dZNkOrs0tDzp0V
JoJ/lJiZGQhDogEkW9zCUSUviI1p5zbR4ChYEVukVdQ3PEVPTnVsOUNywmjnBmRJXoSGWT0bzcNN
UKIBfN8sm0TSmeFcFsdtv7nc4+QpegApStgZk3meux+r/uSlS2S9IQ6aXO8qRQCKkhQfFyuxLBRG
fBImXGoAASkUoLc/B2WSbCoNxfP0H1IyXICjttwQyMaYboux7LLS9Z8SI6wElUDgm5vOYkqe1dEm
b4N5G+/BpL3xi7DxLGasXJ0kdhnEy8L6D4lgNPomBv8iBhvQQ6b2oWFHTSXQxXB4JbGQ6oif1JzS
GRlnWPb+3EWhms2fVYYSiUbmWwCFtEjXpJbAl2rjYjIezh87fAyOH5GZr5bGBximHT0YmVlfm64Z
NEs0REweA9WKZW4Fr1WZfLz10TVOkJo1zcQrv4Rl0RMB1P1qcM5PKMskl0AuSiIdADOrkSLlhKFw
V3gC7SJ7ctyqNDYW10kUOdK6K2ce6jm3DkdfrAH8ODc3+8T4y1XajdXLmPgo1szKHUEpFA1auaAb
l+yCQkM7dCbK+8kB0dm1CieHT63GKnUS2Qk8iKzaYQ6mmm1T1ioQH6UyPiu/viBZROT7cdHRvExq
8RgyJXSDYQlLrFKbpX3ZBQ1XhHMyuQwGcyeMynUiI4hZ+/PwgZWZROPshZnhrEiItxWNYFebF9az
sggYQhPWREt3olJsKuK8W2K3Hd7OyhRFsE+5zuwCpvLPg6xgXjniWiqf9iXtbsEAhR3fbWE6J9Ag
XAqpszQEXyXom9fhNp/+eDbsioS127dQMwuiSubjDlEY8O4nWU1mqCtqQEsIH00xVI6VPg3wjSa7
oT6yivyN3P6B9sQlESFkqG/+WMXnKViVP4iRK0EH586Dqsa6Dkrqnz71CcRMo7JeIUPIX4vOgCb+
MEhyIimkdNJNlSwRcd8fXJdzJvnFDMxu+J5qIPkXafwrEOeXGxaqnGlU2tL5LwqKF3+eDvmG8JgF
FWWlBIuG0ZLp+loo1vDBtbNRpqPEFF+o+pIKv4m5z9R2KBBUprlxdSGvhdl9OEzpUJgpzF0vPRcd
Gn/6AnIgztKy+FcOsSVS1FV5fCwYmbNmtEkIefwIxBOnenxpc/+gDRax0Ee2yWxw9kyGYgg9iQ9l
rspeakl8oNauWqWM2v/9G3L5rzeahRYC+ubFc3BRLU7Dsg9XT1DiHoYNhqJ7U6kpDaqJUhufdUpf
gUNuR3btjZukyRq7f2LaXoV8XX0hHZs2ZRdHGcxK5b+oXPeusjDafxEUAjgPOZuhA1pG/9XKNLfP
vTjRgoL6i4u/RmkkOrJYNOslDe3fFK6Qws7KVCrYmgymGdyh7FWCoEBpLgq2lNANyuTbGLbFQ0zK
4L5kzM2cBnZzZZ5/l7NGNywL7yGsPY5dxphG14mTEvlf3MMGo/L5jk0OXFwtpY+anL96MSYmrcla
ZOWI4wmmZC8fZUizRWb89WBEV9pSY2n9W8/gAaFRe7kVz2Lo8e/fLLH/gUTMR1fIhQ9X3N0gcDy1
1P7L7vrK6Y8QC5QqqsPvlc8Oyuk/f3ZlT2Tt+yj9LMOTBE/pwze35acHSHZGZn98IpyjPib6NHBJ
bUn9n994iT25P7yxW4/h8ioo4wZ3qkiz0vpfXB19sA5zbhtfJDZP+4wrMui9ZPNFRuQ/w/NZfweI
MeT7hIj15D9/NATTT0yfX/as2jaSAinOyofUGYmO798aijF5JmR+nMWvX6fpMe8TIsqDRNB9LCHy
kRreNVsSxKV3Bu/3bdt/Ln8swKq0OLyCGPNlysOGETjl1ghkgq/yGfKRLlmds34OCwUhzda97dQd
O21Sm55LeTi1oOwH8HcrxDYDiOk/JlKDPZlyOO/OSEDUtRyiaPHHtzZx+ZzQ/d1vZEAEGY2DsTPw
IlZnwFPJ5wfWvFlknfE1BpMqYzDZDv/HRGPOKCAkoB5O/1iUZXHsT6bzhsg6nAFlOmHLDRaj45WU
g6yk0QKZHn8ixz8e3JSJ3PrqdUoss+i3qLzLU1ettgWsIsNiC46j48N/73V3mHyaps7TgSmed5un
Vxz3nt32/fSqxlxsibMMCFnxLn6HVc6IO59J3Jj4s72EF70itafY5ll0+3T3irJ579eNjNNoLuHX
zQA7RWYVdWyi4UTPrQFyMlM/1Dj5ft3uVXXtcHc+xDJcOO1cqpiUmpxwU+WS1qZZpJiw07LHbepw
QyhE8/eDMy7YFFjH53c9dCrU1XF7unas5caoI/o+6GKEe9oOtglKllgg0tVgJtK+I53QrtxegKUW
PG/ycnPQJoK4JALWRLHVwIRJQ53MfTBF8t9vruEaB/776eZvicZuSRLi3Uj0k5bo+81bFpCRlhd5
k4S8CfI62f2lj09w9ZenARWqMZe4r/LaNt0l6lDwzrQ5IabRaVMFjGgDM/ZXo28YNSm6ghF8pfNQ
ws0U8spdebLTGchwtzTSy+0yyHeu7kD12S++Kj8iRABqrBISfRmeI0laR88RUY7NxB3P+5o2yfPZ
kvimlixPBiv4tWmR6RF7nG1z2t1VAy0k/hhcx+xWRQ+1x3UZxf1zfAHBGj/HdoxkuPOigUcuPYB8
aNfuiBnmQY4Xr51HW8LA1xkaB9VaT4FwqODy692DzJV4RX8QNiTpOp9ySOuPMlu6FlT3TwdD1E51
Hx9llY3EybFigR4W/By7aduCDX/aoU085bFNaP3IxOTG8Iat4N8UMwpn1bSPJC3nwcvqFcvdZauN
+jJbvkvdUjpgcbgoAuUyIGPYgchx4KJfu6XZRuHvjlrz9DvKeF9GrcGi1uk+ai2/Tk+fXM0pP67T
jJg0PS557fSbLT6oOChNK9xY/1Kc+sc+TP3+7ZfjVHtpi1amIUxF9Jo8eh0D1bYSZPHJFeEhssyq
+Z0gc/4gvu0sgvMuUCVxOyiyxZEgfVqA+qZ4ynyDbIOF4NQyCj/0zbLyN1B23Vd1DGQhNBImxqa3
jtNPA4NcrEVZVJkykyvr5qUzyC22Hh5ii6rlmazV3OXtX8T9XIiFCzufZNqiUZPJswyLwuYxkEFI
iCDUWM1Nbqi/XmIo6iGk0Vu2Z/NQlB1S5G92lFy4M6ARg96Gg1cnj99MiFwh2dILfUa9Z8cmKT++
9A3y2qPQw9vC0HoZQus4MR7ty/rcWTgvnQ3Np2npiM+ZmsJOU16qkb9it8qCuBB3XpNFUVbu+3Dp
4hkOr7JmYZIhgasZZ90H02vG9emH7ol+DLxFOpDbiw85Bgk4jc3EqdZk7j//FVqioDD+d8+zv8XO
elq+UAFpFEf+YcgNrL/uO5J8ml25769hfYzrOMtOk0R5Q32cF+YQ8vpYYnnMoYwpAkyze8xEm3HJ
cjQXyg+TAdkmMjNmnjlTvdvs2wL9fy3Pe/EcMKhqiwl9XCSYZkCGIN08s7d4oOx27gYkn9LcDNls
QqCs7nL03K1PhGJKjqyS27+zp2xPQZzasJ+p2hwHn8zxBJL12F54eAY3H3G4bJb1yLbVIq51IRyU
k/JZG4UclS043lx7jKALSgicFY5HGgS2OVk6/VWwP4IxXL4ffgg2Jd/GYzlRP7kjWdShS894Ly2/
Wx1/YR3xQi25qOm6DhzDqXZUhrY8D123vE/MnRBDGNyqVafvXIG/eHPQ4Myp+mnU5odUxAC8wJHO
iXQ3xNDnXtdR8ENZs3sbEv3JZfLi2B1yGXnpe8QkqAW1jFs4b+CX2Gk4eiuIdpg0oTDbuecEmA7u
Goc8w0iusKnRZt12XoJa2F9dzaSbWb++xvGcwkIXpuDO4EJmpLqnD5VYLLdC0GDer1+DsLokEJgh
eO8W2YtokSd/3Sh3DYnk+TNMTonUj0qtkRM5HIulvKUHjsPBi/Mi3cbIawUtMXBkCVOaIxLGO5ex
ClEJo3jz7UXpmQGXMiHZ0DzsXPXL+iOhxm6U/y7nx+PnjrSUFGHaraB+PPAcppqW+rZvISfyiVIR
2x3mvisW/bF1FkFFOMl9q4/vecz4k/h4GlBIcA/vsng7oQqlC96HVyiQ+7Bjy/7QQEFxMgghq+Jq
eKdRHmRFruA4DJQwqOENl16ImJBWuRlFlA6iGBwFzQ2l2Sj3PsoEVjxJ8uXkEsprVm7gQ2Y5EDfM
FDfsKThU3FpuoKtozEwwIj1wHNQ1sGe1/MDF1V5Xg8EAJ2ESGMeLuwhOpDfSi3CL6qLnNyqdSPD1
xN4qgVJ4z/o1s2hI20n/Hqr8RkBXGseJsx1HHREcL/qqLhyUIPi4eZzKQ+MOwF4cE9Gy4y4Olzw9
0BMxuTuOHDtPou7zA7qqEQQR3ZpY4LN3ZJ2UIzieXQkb6BuKd3jWcMW1LXSJ7k+ZCZB4opbXdm13
5luJfTCxS62RqfMan9/6MJFiSDW1ToeWAfqd3FnSd0rVnSWPlAs6Xtw9Bmeg3OaSqwGKYPCW3KV8
CIZgDeDZ9V/XQBajK0xGGsTSfwSYPde9WaPojcebcpVhJrVqjt5GOBilf1lv831D4tiauREdrGcC
1o4599yLVAeAiDh6gTxMC7mNENJsr3UDIGiSa8NcfJbDOcX5jddhUpxJk6ap5DX+9DzLMHhmMg9o
RvJmM7WrKIfgppJXCoO+ix+L4jitSZzcFtIihARrT+/+WKJC3s3VYXachM1l/c1nYO+Xyd+ELy4L
Sc/DF/ERw10bzbbWLJHpyH7tTN5fvBt0izMe8dX0MxLPQEfbGnh0AckAHlDDSVwBSXJRXlv8F5iu
P3tcEhCQLo5n61ZXaA5AUg2X30dsQNzRsBLbc/GrJnECIAlgjfoJCUiF5afbLJ32eJSD6u4+Ij6C
2fEZd+d1Ga2Ho5PqwrYaLABMbJOkNd5H5zU4E/IZ6oIePwREiXXSxKOHFBKygn/z3IWyktiPGBZS
Cl6EGQj+Wttodol+gLsq8vbt8Y7jSOsICozC/hWQU+mfvp9WdT8WSD/3k3VIDqoAxu9Ian4QzpDQ
istdg2RwhKoPDr4fqey19MccznIcxd3dsNNpawoxFr0dUSFsEAubdnSfQowHJgUAMb05IljktSr4
8MGRHX+xW4giSkINamFLvg6PEIsizOKs2dxbb1mIrEBd5viqL3chy9JO004lAsGyBmeNDoN27szK
57fu8bCKWYm5SsdTxWrl3NBF6CPKa6sy/w/e+OBo0nrKZ8P25hPplQolQCU0IAk631XdLCZcLf2f
736y0exBF341Hl6fRvWjvsvhx4Fk1X/adRF+NL5d3rlZgUj5fNk/UJvdP+a7nzSyfp/1VI6/o5bw
VY4rmNJtvctxzeFXU1xb1J4c3TIFF/IKUxxyXMvTrHIDNW7T/NfyWn/0tNYWWf47ea2JCaGWYm0z
gH4NVjWfx7TWxIzQPGS0WhFhMfmsXUZrRqbAMDADu5iYjl02y8jXpWezbDZNJocx5LIonMDcemsS
k2k+wrEwTBKjHTlG2A8vrDTQD5QWvtuToWDr5uQQVBysdCdj5wRPallK43imIxcgfKslsb5/e729
SV4lAY1SlOlQ3sFdp46vkhNg+YXqFcuYdmBuy8OLtNJa18KhwXuRpQYzSH3w2jFNfKhZS2WxKUjf
duu+s96ReT8mRC46kskXFdw7wbgorXV0TAhwzi2t1SElNqfTXupDm1+YDsS4tVj3uxiKDG9dwpxm
TmmXeCHkI3l5hguLe0fJu2PaK9S+9Hi2y9PeevJn7bWEnRdCl6jt2FcmoChbMIjqzuILlf1lSYd2
KXg+Qu3UIpdzWTtV6KUDpej8KyWK3hWDvFcevH8mMoTurg5jUAl8lQ6LBTxDahRfiTaigvZ3z/a/
w0n9sE5fzPatopHuCaDrLxsFDQaCkQWNEsIAdsyr657Pj91M6HGa6+O07ub895H/ebEpX5xOyw4Z
qfNqDNBGC90G9swZ619LmhPplWyuhnw59IuktFdt+ufeQa56gDZWsuYQIYeVE4ON0XfRREHJaCR9
FhmCnImxKryLeegFZ02yQdyB4CA6U24EF21WYSRIb5GQ7e367aHdLkiiu2EmN6AtEe8uteiPg/Xh
YwaIErS9WSKTyT/zUIgrYeXjTSbKwed3LMBYw3B4+O87Y8KoOk0LAel4k73uzCAQUpHHtxuFvKJs
lGbnxUabDatWCq3Fq151ga3PwpvS5QhVEP4cssipbdqxqB3bqDjBN8Mtg5TuWLSiGj7LqaOjZ9A2
FlXEIHt0cnlnXHdCWeTpaXBiS+5HeOyuRbHXQPr0ufQKCJ8q2NutjozsNZAE33TjLb1JGg8tQc5p
R99llGvaasFeiYRHYLVQZOKrWHmSNfxkPMXoNRAy56ahtDLjw2S7DAZB0pmcWLuK4ho+vPh2N9Ex
HQGaL3uuB6lMyKKCelVkovUxcqWQYNJFQi2xdmjkoBaURSj9UDBIr3LrNkqvfd6ceEHZb9hJ6jXj
oGv+edvjSsEkvfnORu4DREW+DsDSKE3IDAwat4fRaq7kknafawrPtALIy+tQSA1RFZAXj1CK80dP
riKSsFJaP46QVdFD//jQRel9NO+qKmjrVvUQ5jaNqMi24lsF8n3pqztZowqILWnfoZGjqCc1zHte
bVaBqSsDDm9mQo8fkMIbSiOz00ZvPxVTWsXDtwB0Exc08uKMkYo6QUuxvFKGjwEFzNC96vFyBuni
Mg/i2OSQPr/tlGty6jfhIyHFbpKPprb4zNxAE6vsDNJBUqrOrHZsz+W5ZHw8hEf2d1i6AdCbwHV1
QEf2qy4GCbbqhyvNNyBeZ4kOV4VTe+1XbVkDMUN51a+BeOt/BIj3H/Btnn6E/00olcI/vyKOzL8M
Dtk+88W1NNYsP+bpMU/1sQFy1y6mkTtcj2IaMT6W9B+Pp94VazAGWQiuMDJkICV98bUaRgp2ghwW
aaXYIrIMQEkPk4I+9dVUlLBGVlqWuB/Fw/Rj4kXhiIegKlp1TvzWNIRWLYgxAPJZYQ+K0B5bGavc
4y0PqpqnS+lnTPexVUoUH6DWEZmGvq1P3Jwa9X8E+dkyS2mL4ICFkOWFmNxlGUYGrsicSTHhFY5Q
90OwuGrrTRnNl0tlggBFNWzA5T6Y9FtrH8pFBLk+WllF+rNKGlD2oTJF0rF+x1cJvrIJ65CJgEcl
AidZPCD2XTue5MXjOg4rhFMqNIGig2jqVSmaKK5JiwCRhme+deaAYVB1c/AONABbWNUV/Sduy5+M
POe4ZlSLbA9+hkrtzWsDZHawAJqBsyfrpkgcPJNFwUIcxE4QZH0AKN8dRmy0xPIkPx9sccPsoZY8
p3tRw/EmKrYy8cGA69CrQO71/OIF5zwZHIAIv07MRPkPdoyD11tLcSHaOg5Gu4kxFSgopugmkVoQ
OiTk0TCN1zKAPrEVV0U5T2TIk45yFaB3mrtUBxWpT1cIH8APqjjmxJb/4ydushqpFhgT5c9/hLYR
SlCYRgBtePwfJggADq55MrbbtIMLBWYTBSOvwOT/MP0KHp+fKE2IE5J+tfD8CizwqpkDftD9aBKP
GIOhWVft1aDakXCsuyISgdJGjylhbn+MphPQOigt5oGDc6aJZGdgUD7xa5zlHV2faIP30CLN7U/J
YKqr4rEDqMjtD9zMWEj2wSeK/bcnpFq3X/PCZJgpeLwCILXY1YvZuGZzO0RM1ixYtj/UwvFgftA3
/jrL7YsAFP1eZ/FeIDbWgK/b0ZlPQ9ntNuH+iPTKrMSgtJmZV17JYtEWZjs2MOe2rbHZtBLML6W1
cLRdKR6x460jBw1xKHCc53VWp6lIL+Kh2aNs10o2g7u3zJvLMG1nzqatkRWXGe7tR7bbAO7SeteS
n9vBVV9Mlnp++322zIBNPoZJad/RdvCSJaKChCjh2nNrewAiGhrlaCWd7RGnyF1qpt1ma7ilaU+g
2t8AKUfWpAzJnbh3C92i8dUGua3C0LspUvTdjo4SKgIsheSldngRJrEwZNHhUJ8AwMgaZm1NsEqt
w/bS26FpgrLA92/Aphj28Ec1ORDofmdiudnsqck3JCl0W7Y22NuWwmJoA6d8Nu7SdmyOek1AN+1
|
Beta Was this translation helpful? Give feedback.
-
Eu baixei a versão para Android, como eu faço para a ingine ficar mais agressiva, eu tô usando a gui droidfish |
Beta Was this translation helpful? Give feedback.
-
In this release:
WDL transformation of the NN value head output. Helps with more accurate play
at high level (WDL sharpening), more aggressive play against weaker opponents
and draw avoiding openings (contempt), piece odds play. There will be a blog
post soon explaining in detail how it works.
WDL_mu
which follows the new eval convention, where +1.00means 50% white win chance.
--draw-score
parameter, adjusting the draw score fromwhite's perspective: 0 gives standard scoring, -1 gives Armageddon scoring.
first-move-bonus
option to the legacy time manager, to accompanybook-ply-bonus
for shallow openings.--search-spin-backoff
) to helpwith many cpu threads (e.g. 128 threads), obviously for cpu backends only.
This discussion was created from the release v0.30.0-rc2.
Beta Was this translation helpful? Give feedback.
All reactions