Curriculum Module
Created with R2024a. Compatible with R2024a and later releases.
This curriculum module contains interactive MATLAB® live scripts that teach fundamental concepts and basic terminology related to integral calculus. There is a focus on numerical approximation and graphical representation as tools for understanding the concepts of integral calculus.
You can use these live scripts as demonstrations in lectures, class activities, or interactive assignments outside of class. Calculus - Integrals covers Riemann sum approximations to definite integrals, indefinite integrals as antiderivatives, and the fundamental theorem of calculus. It also covers the indefinite integrals of powers, exponentials, natural logarithms, sines, and cosines as well as substitution and integration by parts. Applications include area and power. In addition to the full scripts, visualizations, and practice scripts there is a Calculus Flashcards app included as well.
The instructions inside the live scripts will guide you through the exercises and activities. Get started with each live script by running it one section at a time. To stop running the script or a section midway (for example, when an animation is in progress), use the Stop button in the RUN section of the Live Editor tab in the MATLAB Toolstrip.
Looking for more? Find an issue? Have a suggestion? Please contact the MathWorks online teaching team.
Solutions are available upon instructor request. Contact the MathWorks teaching resources team if you would like to request solutions, provide feedback, or if you have a question.
This module assumes a knowledge of functions that is standard in precalculus course materials regarding powers, exponentials, absolute values, logarithms, sines, cosines, rational functions, and asymptotes. It also assumes knowledge of basic area formulas, including the area of a trapezoid. With the exception of Riemann.mlx and RiemannViz.mlx, the scripts are written to follow Calculus-Derivatives and expect basic understanding of derivatives and derivative rules. There is little expectation of familiarity with MATLAB, but you could use MATLAB Onramp as another resource to acquire familiarity with MATLAB.
Use the link to download the module. You will be prompted to log in or create a MathWorks account. The project will be loaded, and you will see an app with several navigation options to get you started.
Download or clone this repository. Open MATLAB, navigate to the folder containing these scripts and double-click on Integrals.prj. It will add the appropriate files to your MATLAB path and open an app that asks you where you would like to start.
Ensure you have all the required products (listed below) installed. If you need to include a product, add it using the Add-On Explorer. To install an add-on, go to the Home tab and select Add-Ons > Get Add-Ons.
MATLAB® is used throughout. Tools from the Symbolic Math Toolbox™ are used frequently as well.
Topic |
Full Script |
Visualizations |
Learning Goals In this script, students will... |
Practice |
Antiderivatives |
Antiderivatives.mlx |
Visualizing Antiderivatives |
|
Calculate Antiderivatives |
Fundamental Theorem of Calculus |
FundamentalTheorem.mlx |
Visualizing the FTC |
|
Apply the Fundamental Theorem of Calculus |
Riemann Sums |
Riemann.mlx |
Visualizing Riemann Sums |
|
|
Substitution |
Substitution.mlx |
Visualizing Substitution |
|
Apply the method of substitution |
Integration by Parts |
ByParts.mlx |
Visualizing Integration by Parts |
|
Apply the method of integration by parts |
1. Choose the type of practice. |
2. Solve problems. |
3. Analyze your progress. |
|
|
|
MATLAB Desktop
- Ensure that you have MATLAB R2021a or newer installed.
- Download CalculusFlashcards.mlapp or download and unzip the entire repository.
- Right-click the app in MATLAB and select run or type run("CalculusFlashcards.mlapp") in the Command Window.
MATLAB Online
The license for this module is available in the LICENSE.md.
Courseware Module |
Sample Content |
Available on: |
Calculus: Derivatives |
|
GitHub |
Numerical Methods with Applications |
|
GitHub |
Or feel free to explore our other modular courseware content.
Looking for more? Find an issue? Have a suggestion? Please contact the MathWorks teaching resources team. If you want to contribute directly to this project, you can find information about how to do so in the CONTRIBUTING.md page on GitHub.
© Copyright 2024 The MathWorks™, Inc