-
Notifications
You must be signed in to change notification settings - Fork 2k
API
The extension has 2 APIs:
- external code API
- web API
The external code API is useful when you want to control this extension from another extension.
The web API is useful when you want to communicate with the extension from a web client.
The extension defines the external_code
module. This module contains functions that you can use to control the extension for generating.
To create custom arguments and pass them to the extension for generating:
import importlib
external_code = importlib.import_module('extensions.sd-webui-controlnet.scripts.external_code', 'external_code')
def create_script_args(p: StableDiffusionProcessing):
models = external_code.get_models()
cn_units = [
external_code.ControlNetUnit(
model=models[0], # assuming at least 1 model exists
...
),
external_code.ControlNetUnit(
model=models[1], # assuming at least 2 models exist
...
),
...
]
external_code.update_cn_script_in_processing(p, cn_units)
To update the ControlNet processing units from an existing script runner:
import importlib
external_code = importlib.import_module('extensions.sd-webui-controlnet.scripts.external_code', 'external_code')
def update_script_args(p: StableDiffusionProcessing):
cn_units = external_code.get_all_units_in_processing(p)
cn_units[0].resize_mode = external_code.ResizeMode.RESIZE
cn_units[0].model = ...
cn_units[1].image = None
...
external_code.update_cn_script_in_processing(p, updated_units)
To remove all ControlNet processing units from an existing script runner: (essentially has the same effect as disabling the extension)
import importlib
external_code = importlib.import_module('extensions.sd-webui-controlnet.scripts.external_code', 'external_code')
def disable_controlnet(p: StableDiffusionProcessing):
external_code.update_cn_script_in_processing(p, [])
API Update: The /controlnet/txt2img
and /controlnet/img2img
routes have been removed. Please use the /sdapi/v1/txt2img
and /sdapi/v1/img2img
routes instead.
The extension adds the following routes to the web API of the webui:
- GET
/controlnet/model_list
- GET
/controlnet/module_list
- POST
/controlnet/detect
- GET
/controlnet/version
/sdapi/v1/txt2img
and/sdapi/v1/img2img
All routes use the Content-Type: application/json
header.
Get the list of available ControlNet models. Returns a dictionary of the form {"model_list": [...]}
. Each value of "model_list"
is a valid candidate for the "model" property of the ControlNetUnitRequest
object described below.
Get the list of available preprocessors. Returns a dictionary of the form {"module_list": [...]}
. Each value of "module_list"
is a valid candidate for the "module" property of the ControlNetUnitRequest
object described below.
Request parameters:
-
alias_names=true
: whether to get the ui alias names instead of internal keys. Defaults tofalse
Run a preprocessor by itself. Body of the route accepts a JSON object with the following property:
-
"controlnet_module"
: preprocessor to use. defaults to"none"
-
"controlnet_input_images"
: images to process. defaults to[]
-
"controlnet_processor_res"
: resolution of the preprocessor. defaults to512
-
"controlnet_threshold_a"
: first parameter of the preprocessor. only takes effect when preprocessor accepts arguments. defaults to64
-
"controlnet_threshold_b"
: second parameter of the preprocessor, same as"controlnet_threshold_a"
for usage. defaults to64
Get running API version. Returns a dictionary of the form {"version": n}
where n
is an integer.
The current API version is 1
.
This object describes a ControlNet processing unit entirely. It has the following properties:
-
"enabled"
: Whether this unit is enabled. defaults toFalse
-
"image"
: image to use in this unit. defaults tonull
-
"mask"
: mask pixel_perfect to filter the image. defaults tonull
-
"module"
: preprocessor to use on the image passed to this unit before using it for conditioning. accepts values returned by the/controlnet/module_list
route. defaults to"none"
-
"model"
: name of the model to use for conditioning in this unit. accepts values returned by the/controlnet/model_list
route. defaults to"None"
-
"weight"
: weight of this unit. defaults to1
-
"resize_mode"
: how to resize the input image so as to fit the output resolution of the generation. defaults to"Scale to Fit (Inner Fit)"
. Accepted values:-
0
or"Just Resize"
: simply resize the image to the target width/height -
1
or"Scale to Fit (Inner Fit)"
: scale and crop to fit smallest dimension. preserves proportions. -
2
or"Envelope (Outer Fit)"
: scale to fit largest dimension. preserves proportions.
-
-
"lowvram"
: whether to compensate low GPU memory with processing time. defaults tofalse
-
"processor_res"
: resolution of the preprocessor. defaults to64
-
"threshold_a"
: first parameter of the preprocessor. only takes effect when preprocessor accepts arguments. defaults to64
-
"threshold_b"
: second parameter of the preprocessor, same as above for usage. defaults to64
-
"guidance_start"
: ratio of generation where this unit starts to have an effect. defaults to0.0
-
"guidance_end"
: ratio of generation where this unit stops to have an effect. defaults to1.0
-
"control_mode"
: see the related issue for usage. defaults to0
. Accepted values:-
0
or"Balanced"
: balanced, no preference between prompt and control model -
1
or"My prompt is more important"
: the prompt has more impact than the model -
2
or"ControlNet is more important"
: the controlnet model has more impact than the prompt
-
-
"pixel_perfect"
: enable pixel-perfect preprocessor. defaults tofalse
Pass ControlNetUnitRequest
objects to the argument list of the ControlNet script.
This is the example to work with /sdapi/v1/txt2img
:
{
"prompt": "a cinematic shot of an impressive ants war, ant melee, armageddon",
"sampler_name": "Euler",
"alwayson_scripts": {
"controlnet": {
"args": [
{
"enabled": true,
"image": "base64...",
"model": "diff_control_sd15_depth_fp16 [978ef0a1]"
}
]
}
}
}
This is the example to work with /sdapi/v1/img2img
:
{
"init_images": ["base64..."],
"sampler_name": "Euler",
"alwayson_scripts": {
"controlnet": {
"args": [
{
"enabled": true,
"module": "depth",
"model": "diff_control_sd15_depth_fp16 [978ef0a1]"
}
]
}
}
}
Below is a minimal working example for sanity check (this example is tested every day and you can trust that it should always work.)
import io
import cv2
import base64
import requests
from PIL import Image
# A1111 URL
url = "http://127.0.0.1:7860"
# Read Image in RGB order
img = cv2.imread('your_image.jpg')
# Encode into PNG and send to ControlNet
retval, bytes = cv2.imencode('.png', img)
encoded_image = base64.b64encode(bytes).decode('utf-8')
# A1111 payload
payload = {
"prompt": 'a handsome man',
"negative_prompt": "",
"batch_size": 1,
"steps": 20,
"cfg_scale": 7,
"alwayson_scripts": {
"controlnet": {
"args": [
{
"enabled": True,
"image": encoded_image,
"module": "canny",
"model": "control_v11p_sd15_canny [d14c016b]",
}
]
}
}
}
# Trigger Generation
response = requests.post(url=f'{url}/sdapi/v1/txt2img', json=payload)
# Read results
r = response.json()
result = r['images'][0]
image = Image.open(io.BytesIO(base64.b64decode(result.split(",", 1)[0])))
image.save('output.png')
See also WebUI's sd-api-v1.