forked from OhadRubin/EPR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
api_scorer.py
90 lines (69 loc) · 3.29 KB
/
api_scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import asyncio
import string
from semantic_parsing_with_constrained_lm.src.semantic_parsing_with_constrained_lm.lm_openai_gpt3 import GPT3Client,IncrementalOpenAIGPT3
import json
from omegaconf import OmegaConf
import more_itertools
import tqdm
import hydra.utils as hu
import hydra
import random
from torch.utils.data import DataLoader
import os
@hydra.main(config_path="configs",config_name="api_scorer")
def main(cfg):
print(cfg)
client = GPT3Client(api_key=os.environ["OPENAI_TOKEN"])
lm = IncrementalOpenAIGPT3(client=client,engine=cfg.engine)
# assert "shard_id" in cfg
# assert "n_shards" in cfg
async def get_pred(prompt,dataset_reader):
entry_list = [dataset_reader.dataset[x] for x in prompt]
assert len(entry_list)==1
entry = entry_list[0]
question,answer,test_question,test_answer = dataset_reader.task.get_fields(entry)
enc_text = f"{question}\t{answer}\n{test_question}\t"
prefix_tokens = lm.tokenizer.encode(enc_text)
tokenized_labels = lm.tokenizer.encode(test_answer)
res_list = []
for i,x in enumerate(entry_list):
x['score'] = await lm.logprob_of_completion(prefix_tokens, tokenized_labels)
res_list.append(x)
return res_list
async def run(idx_list,dataset_reader):
task_list = []
assert cfg.batch_size == 1
for i,prompt in enumerate(more_itertools.chunked(idx_list,cfg.batch_size)):
task = asyncio.create_task(get_pred(prompt,dataset_reader))
task_list.append(task)
responses = [await f
for f in tqdm.tqdm(asyncio.as_completed(task_list), total=len(task_list))]
return responses
def run_main(cfg):
assert "shard_id" in cfg
assert "n_shards" in cfg
dataset_reader = hu.instantiate(cfg.dataset_reader)
idx_list = list(range(len(dataset_reader)))
# random.Random(42).shuffle(idx_list)
# print(len(idx_list))
# return None
# dataset = dataset_reader.dataset
if "stop" in cfg:
idx_list = idx_list[:200]
else:
idx_list = more_itertools.divide(cfg.n_shards,idx_list)[cfg.shard_id]
# dataloader = DataLoader(dataset,batch_size=cfg.batch_size,num_workers=5)
# data_list = [x for x in dataloader]
# else:
# data_list = [dataset[x] for x in (idx_list if "stop" not in cfg else idx_list[:200])]
print("starting")
res = asyncio.run(run(idx_list,dataset_reader))
res = list(more_itertools.collapse(res,levels=1))
with open(cfg.output_file, "w") as f:
json.dump(res,f)
run_main(cfg)
# python gpt3_scorer.py example_file=$PWD/data/bm25_break_a_train.json setup_type=qa output_file=$PWD/data/test_scorer.json batch_size=1 +task_name=break engine=davinci-codex +stop=true
#python gpt3_scorer.py prompt_file=$PWD/data/random_smcalflow_valid.json task_name=smcalflow output_file=$PWD/data/test.json engine=davinci-codex +stop=true
if __name__ == "__main__":
main()
# (prompt) >> python gpt3_scorer.py example_file=$PWD/data/bm25_break_a_train.json setup_type=qa output_file=$PWD/data/test_scorer.json batch_size=1 +task_name=break engine=davinci-codex