Skip to content

MurongYue/EPR

 
 

Repository files navigation

Learning To Retrieve Prompts for In-Context Learning

Author implementation of this NAACL 2022 paper.

Training

To generate the training data using the LM and train the retriever use:

python run.py dataset={break|mtop|smcalflow} dpr_epochs=120 gpus=4 partition=killable no_slurm=True

To score using the OpenAI API use:

python api_scorer.py example_file=$EXAMPLE_FILE setup_type=qa output_file=$OUTPUT_FILE batch_size=1 +task_name=break engine=davinci-codex +n_shards=100 +shard_id=0

To run predictions with the OpenAI API use:

python api_client.py prompt_file=$PROMPT_FILE task_name=TASK_NAME output_file=$OUTPUT_FILE  engine=davinci-codex

MISC

If more information is needed, please open an issue on this repo and let me know.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.9%
  • Other 0.1%