Skip to content

Commit

Permalink
Added drift models and namespace corrections
Browse files Browse the repository at this point in the history
  • Loading branch information
dsjohnson committed Aug 21, 2015
1 parent d60d49d commit 3cb3759
Show file tree
Hide file tree
Showing 20 changed files with 577 additions and 234 deletions.
6 changes: 3 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,18 +1,18 @@
Package: crawl
Type: Package
Title: Fit Continuous-Time Correlated Random Walk Models to Animal Movement Data
Version: 1.913
Date: 2015-08-20
Version: 1.920
Date: 2015-08-21
Author: Devin S. Johnson
Maintainer: Devin S. Johnson <[email protected]>
Imports:
mvtnorm,
sp,
raster,
Rcpp (>= 0.11.1),
RcppArmadillo (>= 0.4.200.0),
methods
LinkingTo: Rcpp, RcppArmadillo
Suggests: ggplot2
Description: The Correlated RAndom Walk Library of
R functions was designed for fitting continuous-time
correlated random walk (CTCRW) models with time indexed
Expand Down
1 change: 0 additions & 1 deletion NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@ export(flatten)
export(intToPOSIX)
export(mergeTrackStop)
import(Rcpp)
import(RcppArmadillo)
import(mvtnorm)
import(raster)
import(sp)
Expand Down
40 changes: 30 additions & 10 deletions R/RcppExports.R
Original file line number Diff line number Diff line change
@@ -1,23 +1,43 @@
# This file was generated by Rcpp::compileAttributes
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393

makeT <- function(b, delta) {
.Call('crawl_makeT', PACKAGE = 'crawl', b, delta)
CTCRWNLL_DRIFT <- function(y, Hmat, beta, beta_drift, sig2, sig2_drift, delta, noObs, active, a, P) {
.Call('crawl_CTCRWNLL_DRIFT', PACKAGE = 'crawl', y, Hmat, beta, beta_drift, sig2, sig2_drift, delta, noObs, active, a, P)
}

makeQ <- function(b, sig2, delta) {
.Call('crawl_makeQ', PACKAGE = 'crawl', b, sig2, delta)
CTCRWNLL <- function(y, Hmat, beta, sig2, delta, noObs, active, a, P) {
.Call('crawl_CTCRWNLL', PACKAGE = 'crawl', y, Hmat, beta, sig2, delta, noObs, active, a, P)
}

CTCRWNLL <- function(y, Hmat, Qmat, Tmat, noObs, active, a, P) {
.Call('crawl_CTCRWNLL', PACKAGE = 'crawl', y, Hmat, Qmat, Tmat, noObs, active, a, P)
CTCRWPREDICT_DRIFT <- function(y, Hmat, beta, beta_drift, sig2, sig2_drift, delta, noObs, active, a, P) {
.Call('crawl_CTCRWPREDICT_DRIFT', PACKAGE = 'crawl', y, Hmat, beta, beta_drift, sig2, sig2_drift, delta, noObs, active, a, P)
}

CTCRWPREDICT <- function(y, Hmat, Qmat, Tmat, noObs, active, a, P) {
.Call('crawl_CTCRWPREDICT', PACKAGE = 'crawl', y, Hmat, Qmat, Tmat, noObs, active, a, P)
CTCRWPREDICT <- function(y, Hmat, beta, sig2, delta, noObs, active, a, P) {
.Call('crawl_CTCRWPREDICT', PACKAGE = 'crawl', y, Hmat, beta, sig2, delta, noObs, active, a, P)
}

CTCRWSAMPLE <- function(y, Hmat, Qmat, Tmat, noObs, active, a, P) {
.Call('crawl_CTCRWSAMPLE', PACKAGE = 'crawl', y, Hmat, Qmat, Tmat, noObs, active, a, P)
CTCRWSAMPLE_DRIFT <- function(y, Hmat, beta, beta_drift, sig2, sig2_drift, delta, noObs, active, a, P) {
.Call('crawl_CTCRWSAMPLE_DRIFT', PACKAGE = 'crawl', y, Hmat, beta, beta_drift, sig2, sig2_drift, delta, noObs, active, a, P)
}

CTCRWSAMPLE <- function(y, Hmat, beta, sig2, delta, noObs, active, a, P) {
.Call('crawl_CTCRWSAMPLE', PACKAGE = 'crawl', y, Hmat, beta, sig2, delta, noObs, active, a, P)
}

makeT <- function(b, delta, active) {
.Call('crawl_makeT', PACKAGE = 'crawl', b, delta, active)
}

makeQ <- function(b, sig2, delta, active) {
.Call('crawl_makeQ', PACKAGE = 'crawl', b, sig2, delta, active)
}

makeT_drift <- function(b, b_drift, delta, active) {
.Call('crawl_makeT_drift', PACKAGE = 'crawl', b, b_drift, delta, active)
}

makeQ_drift <- function(b, b_drift, sig2, sig2_drift, delta, active) {
.Call('crawl_makeQ_drift', PACKAGE = 'crawl', b, b_drift, sig2, sig2_drift, delta, active)
}

6 changes: 3 additions & 3 deletions R/crawl-package.R
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,8 @@
#' \tabular{ll}{
#' Package: \tab crawl\cr
#' Type: \tab Package\cr
#' Version: \tab 1.913\cr
#' Date: \tab August 20, 2015\cr
#' Version: \tab 1.920\cr
#' Date: \tab August 21, 2015\cr
#' License: \tab file LICENSE \cr
#' LazyLoad: \tab yes\cr
#' }
Expand All @@ -25,7 +25,7 @@
#' @references Johnson, D., J. London, M. -A. Lea, and J. Durban (2008)
#' Continuous-time correlated random walk model for animal telemetry data.
#' Ecology 89(5) 1208-1215.
#' @import Rcpp RcppArmadillo
#' @import Rcpp
#' @importFrom graphics layout
#' @importFrom methods as slot
#' @importFrom stats approx filter model.frame model.matrix
Expand Down
2 changes: 1 addition & 1 deletion R/crwMLE.R
Original file line number Diff line number Diff line change
Expand Up @@ -169,7 +169,7 @@ crwMLE = function(mov.model=~1, err.model=NULL, activity=NULL, drift=FALSE,
initial.state, theta, fixPar, method="L-BFGS-B", control=NULL, constr=list(lower=-Inf, upper=Inf),
prior=NULL, need.hess=TRUE, initialSANN=list(maxit=200), attempts=1)
{
if(drift) stop("At this time drift models are not supported with this function. Use 'crwMLE' for now.\n")
#if(drift) stop("At this time drift models are not supported with this function. Use 'crwMLE' for now.\n")
st <- Sys.time()
# if (missing(Time.name) & !inherits(data,"STIDF")) stop("Argument 'Time.name' missing and NOT a spacetime STIDF object. Please specify")

Expand Down
16 changes: 6 additions & 10 deletions R/crwN2ll.R
Original file line number Diff line number Diff line change
Expand Up @@ -71,21 +71,17 @@ crwN2ll = function(theta, fixPar, y, noObs, delta, a,
active <- ifelse(b==Inf, 0, 1)
b <- ifelse(b==Inf, 0, b)
} else {active=rep(1,N)}
#if (driftMod) {
### Change back for drift model
if(as.logical(FALSE)){
if (driftMod) {
theta.drift <- par[(n.errX + n.errY + 2 * n.mov + 1):
(n.errX + n.errY + 2 * n.mov + 2)]
b.drift <- exp(log(b) - log(1+exp(theta.drift[2])))
sig2.drift <- exp(log(sig2) + 2 * theta.drift[1]) #rep(exp(2*theta.drift[1]), length(sig2)) #
call.lik <- "crwdriftn2ll"
sig2.drift <- exp(log(sig2) + 2 * theta.drift[1])
ll <- CTCRWNLL_DRIFT( y=as.matrix(y), Hmat, b, b.drift, sig2, sig2.drift, delta, noObs, active, a, P)$ll
} else {
b.drift <- sig2.drift <- 0.0
call.lik <- CTCRWNLL
ll <- CTCRWNLL( y=as.matrix(y), Hmat, b, sig2, delta, noObs, active, a, P)$ll
}
movMats <- getQT(sig2, b, sig2.drift, b.drift, delta, driftMod=FALSE)

ll <- CTCRWNLL( y=as.matrix(y), Hmat, movMats[["Qmat"]], movMats[["Tmat"]], noObs, active, a, P)$ll
#movMats <- getQT(sig2, b, sig2.drift, b.drift, delta, driftMod=FALSE)

if(is.null(prior)) return(-2 * ll)
else return(-2 * (ll + prior(theta)))
}
14 changes: 4 additions & 10 deletions R/crwPostIS.R
Original file line number Diff line number Diff line change
Expand Up @@ -121,22 +121,16 @@
active <- ifelse(b==Inf, 0, 1)
b <- ifelse(b==Inf, 0, b)
} else active = rep(1,N)
#if (driftMod) {
### Change back for drift model
if(as.logical(FALSE)){
if (driftMod) {
theta.drift <- par[(n.errX + n.errY + 2 * n.mov + 1):
(n.errX + n.errY + 2 * n.mov + 2)]
b.drift <- exp(log(b) - log(1+exp(theta.drift[2])))
sig2.drift <- exp(log(sig2) + 2 * theta.drift[1]) #rep(exp(2*theta.drift[1]), length(sig2)) #
call.lik <- "crwdriftn2ll"
sig2.drift <- exp(log(sig2) + 2 * theta.drift[1])
out=CTCRWSAMPLE_DRIFT(y, Hmat, b, b.drift, sig2, sig2.drift, delta, noObs, active, a, P)
} else {
b.drift <- sig2.drift <- 0.0
#call.lik <- CTCRWNLL
out=CTCRWSAMPLE(y, Hmat, b, sig2, delta, noObs, active, a, P)
}
movMats <- getQT(sig2, b, sig2.drift, b.drift, delta, driftMod)

out=CTCRWSAMPLE(y, Hmat, movMats$Qmat, movMats$Tmat, noObs, active, a, P)

if(driftMod){
colnames(out$sim) <- apply(expand.grid(c("mu","theta","gamma"), c("x","y")), 1, paste, collapse=".")
} else {
Expand Down
43 changes: 18 additions & 25 deletions R/crwPredict.R
Original file line number Diff line number Diff line change
Expand Up @@ -115,29 +115,21 @@ crwPredict=function(object.crwFit, predTime=NULL, flat=TRUE, ...)
theta.mov <- par[(n.errX + n.errY + 1):(n.errX + n.errY + 2 * n.mov)]
sig2 <- exp(2 * (mov.mf %*% theta.mov[1:n.mov]))
b <- exp(mov.mf %*% theta.mov[(n.mov + 1):(2 * n.mov)])
#activity <- rep(1, N)
if (!is.null(activity)) {
theta.activ <- par[(n.errX + n.errY + 2 * n.mov + 1)]
b <- b / ((activity) ^ exp(theta.activ))
active <- ifelse(b==Inf, 0, 1)
b <- ifelse(b==Inf, 0, b)
} else active = rep(1,N)
#if (driftMod) {
### Change back for drift model
if(as.logical(FALSE)){
if (driftMod) {
theta.drift <- par[(n.errX + n.errY + 2 * n.mov + 1):
(n.errX + n.errY + 2 * n.mov + 2)]
b.drift <- exp(log(b) - log(1+exp(theta.drift[2])))
sig2.drift <- exp(log(sig2) + 2 * theta.drift[1]) #rep(exp(2*theta.drift[1]), length(sig2)) #
call.lik <- "crwdriftn2ll"
sig2.drift <- exp(log(sig2) + 2 * theta.drift[1])
out = CTCRWPREDICT_DRIFT(y, Hmat, b, b.drift, sig2, sig2.drift, delta, noObs, active, a, P)
} else {
b.drift <- sig2.drift <- 0.0
#call.lik <- CTCRWNLL
out=CTCRWPREDICT(y, Hmat, b, sig2, delta, noObs, active, a, P)
}
movMats <- getQT(sig2, b, sig2.drift, b.drift, delta, driftMod)

out=CTCRWPREDICT(y, Hmat, movMats$Qmat, movMats$Tmat, noObs, active, a, P)


pred <- data.frame(t(out$pred))
if (driftMod) {
Expand All @@ -149,22 +141,23 @@ crwPredict=function(object.crwFit, predTime=NULL, flat=TRUE, ...)
obsFit$outlier.chisq <- out$chisq
obsFit$naive.p.val <- 1 - pchisq(obsFit$outlier.chisq, 2)
if(getUseAvail){
warning("'getUseAvail' not implemented yet in this version of 'crawl' contact Devin to fix this! ")
# idx <- data$locType=="p"
# movMatsPred <- getQT(sig2[idx], b[idx], sig2.drift[idx], b.drift[idx], delta=c(diff(data[idx,tn]),1), driftMod)
# TmatP <- movMatsPred$Tmat
# QmatP <- movMatsPred$Qmat
# avail <- t(sapply(1:(nrow(TmatP)-1), makeAvail, Tmat=TmatP, Qmat=QmatP, predx=predx[idx,], predy=predy[idx,],
# vary=vary[,,idx], varx=varx[,,idx], driftMod=driftMod, lonadj=lonAdjVals[idx]))
# avail <- cbind(data[idx,tn][-1], avail)
# colnames(avail) <- c(tn, "meanAvail.x", "meanAvail.y", "varAvail.x", "varAvail.y")
# use <- cbind(data[idx,tn], predx[idx,1], predy[idx,1], varx[1,1,idx], vary[1,1,idx])[-1,]
# colnames(use) <- c(tn, "meanUse.x", "meanUse.y", "varUse.x", "varUse.y")
# UseAvail.lst <- list(use=use, avail=avail)
warning("'getUseAvail' not implemented yet in this version of 'crawl' contact maintainer to fix this! ")
# idx <- data$locType=="p"
# movMatsPred <- getQT(sig2[idx], b[idx], sig2.drift[idx], b.drift[idx], delta=c(diff(data[idx,tn]),1), driftMod)
# TmatP <- movMatsPred$Tmat
# QmatP <- movMatsPred$Qmat
# avail <- t(sapply(1:(nrow(TmatP)-1), makeAvail, Tmat=TmatP, Qmat=QmatP, predx=predx[idx,], predy=predy[idx,],
# vary=vary[,,idx], varx=varx[,,idx], driftMod=driftMod, lonadj=lonAdjVals[idx]))
# avail <- cbind(data[idx,tn][-1], avail)
# colnames(avail) <- c(tn, "meanAvail.x", "meanAvail.y", "varAvail.x", "varAvail.y")
# use <- cbind(data[idx,tn], predx[idx,1], predy[idx,1], varx[1,1,idx], vary[1,1,idx])[-1,]
# colnames(use) <- c(tn, "meanUse.x", "meanUse.y", "varUse.x", "varUse.y")
# UseAvail.lst <- list(use=use, avail=avail)
UseAvail.lst=NULL
}
else UseAvail.lst=NULL
speed = sqrt(apply(matrix(pred[,2:(2+driftMod)]), 1, sum)^2 + apply(matrix(pred[,(4+driftMod):(4+2*driftMod)]), 1, sum)^2)
speed = sqrt(apply(as.matrix(pred[,2:(2+driftMod)]), 1, sum)^2 +
apply(as.matrix(pred[,(4+driftMod):(4+2*driftMod)]), 1, sum)^2)
out <- list(originalData=fillCols(data), alpha.hat=pred,
V.hat=var, speed=speed, loglik=out$ll, useAvail=UseAvail.lst)
if (flat) {
Expand Down
19 changes: 10 additions & 9 deletions demo/harborSeal.R
Original file line number Diff line number Diff line change
Expand Up @@ -7,17 +7,18 @@ harborSeal$Argos_loc_class = factor(harborSeal$Argos_loc_class, levels=c("3","2"
## Project data ##
library(rgdal)

toProj = harborSeal[!is.na(harborSeal$latitude),]
toProj = harborSeal[!is.na(harborSeal$latitude),c("Time","latitude","longitude")]
coordinates(toProj) = ~longitude+latitude
proj4string(toProj) <- CRS("+proj=longlat")
toProj <- spTransform(toProj, CRS("+init=epsg:3338"))
toProj = as.data.frame(toProj)
harborSeal = merge(toProj, harborSeal, all=TRUE)
colnames(toProj)[2:3] = c("x","y")
harborSeal = merge(toProj, harborSeal, by="Time", all=TRUE)
harborSeal = harborSeal[order(harborSeal$Time),]

initial.cpp = list(
initial = list(
a=c(harborSeal$x[1],0,harborSeal$y[1],0),
P=diag(c(10000^2,54000^2,10000^2,5400^2))
P=diag(c(10000^2,5400^2,10000^2,5400^2))
)

##Fit model as given in Johnson et al. (2008) Ecology 89:1208-1215
Expand All @@ -34,10 +35,10 @@ set.seed(123)
fit1 <- crwMLE(
mov.model=~1, err.model=list(x=~Argos_loc_class-1), activity=~I(1-DryTime),
data=harborSeal, coord=c("x","y"), Time.name="Time",
initial.state=initial.cpp, fixPar=fixPar, theta=c(rep(log(5000),3),log(3*3600), 3),
initial.state=initial, fixPar=fixPar, theta=c(rep(log(5000),3),log(3*3600), 0),
constr=constr,
control=list(maxit=2000, trace=1, REPORT=1),
initialSANN=list(maxit=200, trace=1, temp=20, tmax=20, REPORT=1)
initialSANN=list(maxit=200, trace=1, REPORT=1)
)

print(fit1)
Expand All @@ -47,9 +48,9 @@ p2=ggplot(aes(x=Time, y=mu.x), data=pred1) + geom_ribbon(aes(ymin=mu.x-2*se.mu.x
geom_path(, col="red") + geom_point(aes(x=Time, y=x), col="blue", size=1)
p3=ggplot(aes(x=Time, y=mu.y), data=pred1) + geom_ribbon(aes(ymin=mu.y-2*se.mu.y, ymax=mu.y+2*se.mu.y), fill="green", alpha=0.5) +
geom_path(, col="red") + geom_point(aes(x=Time, y=y), col="blue", size=1)
print(p1)
print(p2)
print(p3)
suppressWarnings(print(p1))
suppressWarnings(print(p2))
suppressWarnings(print(p3))
# ggsave("map.pdf", p1)
# ggsave("xaxis.pdf", p2, width=10, height=2)
# ggsave("yaxis.pdf", p3, width=10, height=2)
Expand Down
20 changes: 10 additions & 10 deletions demo/harborSealSmooth.R
Original file line number Diff line number Diff line change
@@ -1,23 +1,23 @@
require(crawl)
require(splines)
# library(crawl)
library(ggplot2)
library(splines)
library(rgdal)
data(harborSeal)
head(harborSeal)
harborSeal$Argos_loc_class = factor(harborSeal$Argos_loc_class, levels=c("3","2","1","0","A","B"))

## Project data ##
library(sp)
library(rgdal)

toProj = harborSeal[!is.na(harborSeal$latitude),]
toProj = harborSeal[!is.na(harborSeal$latitude),c("Time","latitude","longitude")]
coordinates(toProj) = ~longitude+latitude
proj4string(toProj) <- CRS("+proj=longlat")
toProj <- spTransform(toProj, CRS("+init=epsg:3338"))
toProj = as.data.frame(toProj)
harborSeal = merge(toProj, harborSeal, all=TRUE)
colnames(toProj)[2:3] = c("x","y")
harborSeal = merge(toProj, harborSeal, by="Time", all=TRUE)
harborSeal = harborSeal[order(harborSeal$Time),]
#harborSeal$Time = harborSeal$Time*3600

initial.cpp = list(
initial = list(
a=c(harborSeal$x[1],0,harborSeal$y[1],0),
P=diag(c(10000^2,54000^2,10000^2,5400^2))
)
Expand All @@ -43,8 +43,8 @@ fit1 <- crwMLE(
constr=constr,
theta = theta.start,
prior=prior,
control=list(maxit=2000, trace=1, REPORT=1),
initialSANN=list(maxit=10000, temp=100, tmax=100, trace=1, REPORT=1)
control=list(maxit=2000, trace=1, REPORT=1)#,
#initialSANN=list(maxit=10000, temp=100, tmax=100, trace=1, REPORT=1)
)

print(fit1)
Expand Down
28 changes: 14 additions & 14 deletions demo/northernFurSeal.R
Original file line number Diff line number Diff line change
Expand Up @@ -10,34 +10,34 @@ proj4string(northernFurSeal) <- CRS("+proj=longlat")
northernFurSeal <- spTransform(northernFurSeal, CRS("+proj=aea +lat_1=30 +lat_2=70 +lat_0=52 +lon_0=-170 +x_0=0 +y_0=0 +ellps=GRS80 +datum=NAD83 +units=m +no_defs"))

initial = list(
a=c(coordinates(northernFurSeal)[1,1],0,coordinates(northernFurSeal)[1,2],0),
P=diag(c(10000^2,54000^2,10000^2,5400^2))
a=c(coordinates(northernFurSeal)[1,1],0,0,coordinates(northernFurSeal)[1,2],0,0),
P=diag(c(10000^2,5400^2,5400^2,10000^2,5400^2,5400^2))
)

fixPar = c(log(250), log(500), log(1500), rep(NA,3), NA)
displayPar( mov.model=~1, err.model=list(x=~Argos_loc_class-1),
fixPar = c(log(250), log(500), log(1500), rep(NA,6))
displayPar( mov.model=~1, err.model=list(x=~Argos_loc_class-1), drift = TRUE,
data=northernFurSeal,fixPar=fixPar)
constr=list(
lower=c(rep(log(1500),2), rep(-Inf,2)),
upper=rep(Inf,4)
lower=c(rep(log(1500),2), rep(-Inf,4)),
upper=rep(Inf,6)
)

ln.prior = function(theta){-abs(theta[4]-3)/0.5}
ln.prior = function(theta){-abs(theta[4]+3)/0.5}

#set.seed(123)
fit1 <- crwMLE(
mov.model=~1, err.model=list(x=~Argos_loc_class-1),
mov.model=~1, err.model=list(x=~Argos_loc_class-1), drift=TRUE,
data=northernFurSeal, Time.name="Time",
initial.state=initial, fixPar=fixPar, constr=constr, prior=ln.prior,
control=list(maxit=30, trace=1, REPORT=1),
initialSANN=list(maxit=200, trace=1, REPORT=1)
initial.state=initial, fixPar=fixPar, constr=constr,# prior=ln.prior,
control=list(maxit=300, trace=1, REPORT=1),
initialSANN=list(maxit=200, temp=100, tmax=20, trace=1, REPORT=1)
)
fit1
##Make hourly location predictions
predTime <- seq(ceiling(min(northernFurSeal$Time)), floor(max(northernFurSeal$Time)), 1)
predObj <- crwPredict(object.crwFit=fit1, predTime, speedEst=TRUE, flat=TRUE)
head(predObj)
crwPredictPlot(predObj, "map")
crwPredictPlot(predObj, "map", asp=TRUE)

##Create simulation object with 100 parameter draws
set.seed(123)
Expand All @@ -54,13 +54,13 @@ round(100/(1+(sd(w)/mean(w))^2))
jet.colors <-
colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",
"#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))
crwPredictPlot(predObj, 'map')
crwPredictPlot(predObj, 'map', asp=TRUE)

## Sample 20 tracks from posterior predictive distribution
iter <- 20
cols <- jet.colors(iter)
for(i in 1:iter){
samp <- crwPostIS(simObj)
samp <- crwPostIS(simObj, fullPost = FALSE)
lines(samp$alpha.sim[,'mu.x'], samp$alpha.sim[,'mu.y'],col=cols[i])
}

Loading

0 comments on commit 3cb3759

Please sign in to comment.