PyTorch Implementation using V-net variant of Fully Convolutional Neural Networks
Authors: Ravnoor Gill, Benoit Caldairou, Neda Bernasconi and Andrea Bernasconi
Implementation based on:
Milletari, F., Navab, N., & Ahmadi, S. A. (2016, October). V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 2016 Fourth International Conference on 3D vision (3DV) (pp. 565-571). IEEE.
@misc{Gill2021,
author = {Gill RS, et al},
title = {Accurate and Reliable Brain Extraction in Cortical Malformations},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/NOEL-MNI/deepMask}},
doi = {10.5281/zenodo.4521716}
}
1. Python >= 3.7
2. PyTorch (LTS) <= 1.8.2
3. ANTsPy
4. ANTsPyNet
conda create -n deepMask python=3.8
conda activate deepMask
pip install -r app/requirements.txt
docker run -it -v /tmp:/tmp docker.pkg.github.com/noel-mni/deepmask/app:latest /app/inference.py \
$PATIENT_ID \
/tmp/T1.nii.gz /tmp/FLAIR.nii.gz \
/tmp
Copyright 2021 Neuroimaging of Epilepsy Laboratory, McGill University