Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Video Neva Pretraining + Inference Implementation #9095

Merged
merged 23 commits into from
May 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
134 changes: 134 additions & 0 deletions docs/source/multimodal/mllm/video_neva.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
Video NeVA
==========

Model Introduction
------------------

Video NeVa adds support for video modality in NeVa by representing video as multiple image frames.

There is only a minor change done to :class:`~nemo.collections.multimodal.models.multimodal_llm.neva.neva_model.MegatronNevaModel` class in order to support pretraining on video input data.

Representing video input as a series of images is done in :class:`~nemo.collections.multimodal.data.neva.TarOrFolderVideoLoader` class, using Decord which provides convenient video slicing methods.


Video Neva Configuration
^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: yaml

data:
media_type: video
splice_single_frame: null
num_frames: 8
image_token_len: 256
image_folder: null
video_folder: null

- ``media_type``: If set to `video`, NeVa's dataloader goes through the additional preprocessing steps to represent the input video data as a series of image frames.
- ``splice_single_frame``: Can either be set as `first`, `middle` or `last`. This will result in only a single frame in that specific location of the video being selected.
- ``image_token_len``: The NeVa dataloader calculates `image_token_len` based on the height and width of the preprocessed image frame and the patch size of the CLIP model being used.

.. code-block:: python

image_token_len = (224 // 14) * (224 // 14) = 16 * 16 = 256

- ``num_frames``: This is used to select the number of image frames that will be used to represent the video.
- ``video_folder``: This specifies the directory where the video files are located. This follows the same format as NeVa's `image_folder`.



Inference with Video NeVA
=========================

We can run ``neva_evaluation.py`` located in ``NeMo/examples/multimodal/multimodal_llm/neva`` to generate inference results from the Video NeVA model.
Currently, video NeVA supports both image and video inference by changing the config attribute ``inference.media_type`` in ``NeMo/examples/multimodal/multimodal_llm/neva/conf/neva_inference.yaml`` to either ``image`` or ``video``, and adding the corresponding media path ``inference.media_base_path``.

Inference with Pretrained Projectors with Base LM Model
-------------------------------------------------------

An example of an inference script execution:

For running video inference::

CUDA_DEVICE_MAX_CONNECTIONS=1 CUDA_VISIBLE_DEVICES=0,1,2,3 python3 /path/to/neva_evaluation.py \
--config-path=/path/to/conf/ \
--config-name=neva_inference.yaml \
tensor_model_parallel_size=4 \
pipeline_model_parallel_size=1 \
neva_model_file=/path/to/projector/checkpoint \
base_model_file=/path/to/base/lm/checkpoint \
trainer.devices=4 \
trainer.precision=bf16 \
prompt_file=/path/to/prompt/file \
inference.media_base_path=/path/to/videos \
inference.media_type=video \
output_file=/path/for/output/file/ \
inference.temperature=0.2 \
inference.top_k=0 \
inference.top_p=0.9 \
inference.greedy=False \
inference.add_BOS=False \
inference.all_probs=False \
inference.repetition_penalty=1.2 \
inference.insert_media_token=right \
inference.tokens_to_generate=256 \
quantization.algorithm=awq \
quantization.enable=False

Example format of ``.jsonl`` prompt_file::

{"video": "video_test.mp4", "text": "Can you describe the scene?", "category": "conv", "question_id": 0}

input video file:: video_test.mp4

Output::

<extra_id_0>System
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.

<extra_id_1>User
Can you describe the scene?<video>
<extra_id_1>Assistant
<extra_id_2>quality:4,toxicity:0,humor:0,creativity:0,helpfulness:4,correctness:4,coherence:4,complexity:4,verbosity:4
CLEAN RESPONSE: Hand with a robot arm


Inference with Finetuned Video NeVA Model (No Need to Specify Base LM)
----------------------------------------------------------------------

An example of an inference script execution:

For running video inference::

CUDA_DEVICE_MAX_CONNECTIONS=1 CUDA_VISIBLE_DEVICES=0,1,2,3 python3 /path/to/neva_evaluation.py \
--config-path=/path/to/conf/ \
--config-name=neva_inference.yaml \
tensor_model_parallel_size=4 \
pipeline_model_parallel_size=1 \
neva_model_file=/path/to/video/neva/model \
trainer.devices=4 \
trainer.precision=bf16 \
prompt_file=/path/to/prompt/file \
inference.media_base_path=/path/to/videos \
inference.media_type=video \
output_file=/path/for/output/file/ \
inference.temperature=0.2 \
inference.top_k=0 \
inference.top_p=0.9 \
inference.greedy=False \
inference.add_BOS=False \
inference.all_probs=False \
inference.repetition_penalty=1.2 \
inference.insert_media_token=right \
inference.tokens_to_generate=256 \
quantization.algorithm=awq \
quantization.enable=False

References
----------

.. bibliography:: ../mm_all.bib
:style: plain
:filter: docname in docnames
:labelprefix: MM-MODELS
:keyprefix: mm-models-
Original file line number Diff line number Diff line change
Expand Up @@ -185,6 +185,7 @@ model:
data_path:
lazy_preprocess: True
is_multimodal: True
media_type: image # currently supported: image
sep_image_conv_front: False
image_token_len: 256
conv_template: llama_2 # check `nemo/collections/multimodal/data/neva/conversation.py`
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -187,6 +187,7 @@ model:
data_path:
lazy_preprocess: True
is_multimodal: True
media_type: image # currently supported: image
sep_image_conv_front: False
image_token_len: 256
conv_template: ${model.mm_cfg.llm.model_type} # check `nemo/collections/multimodal/data/neva/conversation.py`
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -182,6 +182,7 @@ model:
data_path:
lazy_preprocess: True
is_multimodal: True
media_type: image # currently supported: image
sep_image_conv_front: False
image_token_len: 256
conv_template: ${model.mm_cfg.llm.model_type} # check `nemo/collections/multimodal/data/neva/conversation.py`
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,9 @@ inference:
min_tokens_to_generate: 0 # The minimum length of the sequence to be generated.
compute_logprob: False # a flag used to compute logprob of all the input text, a very special case of running inference, default False
end_strings: ["<extra_id_1>","<extra_id_7>",] # generation will stop when one of these tokens is generated
images_base_path: /pwd/images
insert_image_token: null # `left` or `right` or `null`
media_base_path: /pwd/images # /path/to/images or /path/to/videos
insert_media_token: left # `left` or `right` or `null`
media_type: image # `image` or `video`

trainer:
devices: 8
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -193,6 +193,7 @@ model:
data_path:
lazy_preprocess: True
is_multimodal: True
media_type: image
sep_image_conv_front: False
image_token_len: 256
conv_template: ${model.mm_cfg.llm.model_type} # check `nemo/collections/multimodal/data/neva/conversation.py`
Expand Down
Loading
Loading