Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add a xmap decorator into reader module for optimizing performance #2242

Merged
merged 3 commits into from
Jun 6, 2017
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
184 changes: 184 additions & 0 deletions python/paddle/v2/dataset/flowers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
and parse train/test set intopaddle reader creators.

This set contains images of flowers belonging to 102 different categories.
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.

The database was used in:

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.

"""
import cPickle
import itertools
from common import download
import tarfile
import scipy.io as scio
from paddle.v2.image import *
import os
import numpy as np
import paddle.v2 as paddle
from multiprocessing import cpu_count
__all__ = ['train', 'test', 'valid']

DATA_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/102flowers.tgz'
LABEL_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/imagelabels.mat'
SETID_URL = 'http://www.robots.ox.ac.uk/~vgg/data/flowers/102/setid.mat'
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'


def default_mapper(sample):
'''
map image bytes data to type needed by model input layer
'''
img, label = sample
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This module seems reading many images from the tarball. If so, it might be great if we can call tarfile.next(), which returns a TarFile objects like tarfile.extractfile. But tarfile.next() reads files in the tarball one-by-one. This reduces the amount of disk seeks which reduces the number of moves of the magnetic head of our disk.

img = paddle.image.load_image_bytes(img)
img = paddle.image.simple_transform(img, 256, 224, True)
return img.flatten().astype('float32'), label


def reader_creator(data_file,
label_file,
setid_file,
dataset_name,
mapper=default_mapper,
buffered_size=1024):
'''
1. read images from tar file and
merge images into batch files in 102flowers.tgz_batch/
2. get a reader to read sample from batch file

:param data_file: downloaded data file
:type data_file: string
:param label_file: downloaded label file
:type label_file: string
:param setid_file: downloaded setid file containing information
about how to split dataset
:type setid_file: string
:param dataset_name: data set name (tstid|trnid|valid)
:type dataset_name: string
:param mapper: a function to map image bytes data to type
needed by model input layer
:type mapper: callable
:param buffered_size: the size of buffer used to process images
:type buffered_size: int
:return: data reader
:rtype: callable
'''
labels = scio.loadmat(label_file)['labels'][0]
indexes = scio.loadmat(setid_file)[dataset_name][0]
img2label = {}
for i in indexes:
img = "jpg/image_%05d.jpg" % i
img2label[img] = labels[i - 1]
file_list = batch_images_from_tar(data_file, dataset_name, img2label)

def reader():
for file in open(file_list):
file = file.strip()
batch = None
with open(file, 'r') as f:
batch = cPickle.load(f)
data = batch['data']
labels = batch['label']
for sample, label in itertools.izip(data, batch['label']):
yield sample, int(label)

return paddle.reader.xmap_readers(mapper, reader,
cpu_count(), buffered_size)


def train(mapper=default_mapper, buffered_size=1024):
'''
Create flowers training set reader.
It returns a reader, each sample in the reader is
image pixels in [0, 1] and label in [1, 102]
translated from original color image by steps:
1. resize to 256*256
2. random crop to 224*224
3. flatten
:param mapper: a function to map sample.
:type mapper: callable
:param buffered_size: the size of buffer used to process images
:type buffered_size: int
:return: train data reader
:rtype: callable
'''
return reader_creator(
download(DATA_URL, 'flowers', DATA_MD5),
download(LABEL_URL, 'flowers', LABEL_MD5),
download(SETID_URL, 'flowers', SETID_MD5), 'trnid', mapper,
buffered_size)


def test(mapper=default_mapper, buffered_size=1024):
'''
Create flowers test set reader.
It returns a reader, each sample in the reader is
image pixels in [0, 1] and label in [1, 102]
translated from original color image by steps:
1. resize to 256*256
2. random crop to 224*224
3. flatten
:param mapper: a function to map sample.
:type mapper: callable
:param buffered_size: the size of buffer used to process images
:type buffered_size: int
:return: test data reader
:rtype: callable
'''
return reader_creator(
download(DATA_URL, 'flowers', DATA_MD5),
download(LABEL_URL, 'flowers', LABEL_MD5),
download(SETID_URL, 'flowers', SETID_MD5), 'tstid', mapper,
buffered_size)


def valid(mapper=default_mapper, buffered_size=1024):
'''
Create flowers validation set reader.
It returns a reader, each sample in the reader is
image pixels in [0, 1] and label in [1, 102]
translated from original color image by steps:
1. resize to 256*256
2. random crop to 224*224
3. flatten
:param mapper: a function to map sample.
:type mapper: callable
:param buffered_size: the size of buffer used to process images
:type buffered_size: int
:return: test data reader
:rtype: callable
'''
return reader_creator(
download(DATA_URL, 'flowers', DATA_MD5),
download(LABEL_URL, 'flowers', LABEL_MD5),
download(SETID_URL, 'flowers', SETID_MD5), 'valid', mapper,
buffered_size)


def fetch():
download(DATA_URL, 'flowers', DATA_MD5)
download(LABEL_URL, 'flowers', LABEL_MD5)
download(SETID_URL, 'flowers', SETID_MD5)
51 changes: 51 additions & 0 deletions python/paddle/v2/dataset/tests/flowers_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.v2.dataset.flowers
import unittest


class TestFlowers(unittest.TestCase):
def check_reader(self, reader):
sum = 0
label = 0
size = 224 * 224 * 3
for l in reader():
self.assertEqual(l[0].size, size)
if l[1] > label:
label = l[1]
sum += 1
return sum, label

def test_train(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.flowers.train())
self.assertEqual(instances, 1020)
self.assertEqual(max_label_value, 102)

def test_test(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.flowers.test())
self.assertEqual(instances, 6149)
self.assertEqual(max_label_value, 102)

def test_valid(self):
instances, max_label_value = self.check_reader(
paddle.v2.dataset.flowers.valid())
self.assertEqual(instances, 1020)
self.assertEqual(max_label_value, 102)


if __name__ == '__main__':
unittest.main()
98 changes: 92 additions & 6 deletions python/paddle/v2/image.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,16 @@
import numpy as np
try:
import cv2
except:
print(
"import cv2 error, please install opencv-python: pip install opencv-python"
)
except ImportError:
cv2 = None
import os
import tarfile
import cPickle

__all__ = [
"load_image", "resize_short", "to_chw", "center_crop", "random_crop",
"left_right_flip", "simple_transform", "load_and_transform"
"load_image_bytes", "load_image", "resize_short", "to_chw", "center_crop",
"random_crop", "left_right_flip", "simple_transform", "load_and_transform",
"batch_images_from_tar"
]
"""
This file contains some common interfaces for image preprocess.
Expand All @@ -28,6 +30,90 @@
"""


def batch_images_from_tar(data_file,
dataset_name,
img2label,
num_per_batch=1024):
"""
Read images from tar file and batch them into batch file.
param data_file: path of image tar file
type data_file: string
param dataset_name: 'train','test' or 'valid'
type dataset_name: string
param img2label: a dic with image file name as key
and image's label as value
type img2label: dic
param num_per_batch: image number per batch file
type num_per_batch: int
return: path of list file containing paths of batch file
rtype: string
"""
batch_dir = data_file + "_batch"
out_path = "%s/%s" % (batch_dir, dataset_name)
meta_file = "%s/%s.txt" % (batch_dir, dataset_name)

if os.path.exists(out_path):
return meta_file
else:
os.makedirs(out_path)

tf = tarfile.open(data_file)
mems = tf.getmembers()
data = []
labels = []
file_id = 0
for mem in mems:
if mem.name in img2label:
data.append(tf.extractfile(mem).read())
labels.append(img2label[mem.name])
if len(data) == num_per_batch:
output = {}
output['label'] = labels
output['data'] = data
cPickle.dump(
output,
open('%s/batch_%d' % (out_path, file_id), 'w'),
protocol=cPickle.HIGHEST_PROTOCOL)
file_id += 1
data = []
labels = []
if len(data) > 0:
output = {}
output['label'] = labels
output['data'] = data
cPickle.dump(
output,
open('%s/batch_%d' % (out_path, file_id), 'w'),
protocol=cPickle.HIGHEST_PROTOCOL)

with open(meta_file, 'a') as meta:
for file in os.listdir(out_path):
meta.write(os.path.abspath("%s/%s" % (out_path, file)) + "\n")
return meta_file


def load_image_bytes(bytes, is_color=True):
"""
Load an color or gray image from bytes array.

Example usage:

.. code-block:: python
with open('cat.jpg') as f:
im = load_image_bytes(f.read())

:param bytes: the input image bytes array.
:type file: str
:param is_color: If set is_color True, it will load and
return a color image. Otherwise, it will
load and return a gray image.
"""
flag = 1 if is_color else 0
file_bytes = np.asarray(bytearray(bytes), dtype=np.uint8)
img = cv2.imdecode(file_bytes, flag)
return img


def load_image(file, is_color=True):
"""
Load an color or gray image from the file path.
Expand Down
Loading