-
Notifications
You must be signed in to change notification settings - Fork 2.9k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[LLM] support Qwen2 #8338
[LLM] support Qwen2 #8338
Changes from 27 commits
36ab9a7
3913e11
0aa1aca
a29e90d
d514dff
1e98323
f81bb43
37dd2d5
d12938a
8cc49fc
9c8222e
4d6ff87
f350a2f
c53690d
9d12995
dba0f74
e487606
cd9c753
10407c4
beb0f4c
beefee9
82ba345
d522ee4
4a1b2e3
526a9db
0c9d5ec
2bb3aba
f203983
58af3ec
c766eb5
5ddc326
de1db67
10a194c
87f0276
8d9970b
89994a6
d57a5b1
bfb65a1
4b96dd0
b274f12
1054f06
056b04c
ab08c17
ad02fdc
23e39fc
36b3897
6455445
b140df6
c08c9a6
e6de5f3
48ae2ab
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
{ | ||
"model_name_or_path": "qwen/Qwen1.5-MoE-A2.7B", | ||
"dataset_name_or_path": "./data", | ||
"output_dir": "./checkpoints/qwen2moe_lora_ckpts", | ||
"per_device_train_batch_size": 4, | ||
"gradient_accumulation_steps": 4, | ||
"per_device_eval_batch_size": 8, | ||
"eval_accumulation_steps":16, | ||
"num_train_epochs": 3, | ||
"learning_rate": 3e-04, | ||
"warmup_steps": 30, | ||
"logging_steps": 1, | ||
"evaluation_strategy": "epoch", | ||
"save_strategy": "epoch", | ||
"src_length": 1024, | ||
"max_length": 32768, | ||
"bf16": true, | ||
"fp16_opt_level": "O2", | ||
"do_train": true, | ||
"do_eval": true, | ||
"disable_tqdm": true, | ||
"load_best_model_at_end": true, | ||
"eval_with_do_generation": false, | ||
"metric_for_best_model": "accuracy", | ||
"recompute": true, | ||
"save_total_limit": 1, | ||
"tensor_parallel_degree": 8, | ||
"pipeline_parallel_degree": 1, | ||
"lora": true, | ||
"zero_padding": false, | ||
"use_flash_attention": false | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,30 @@ | ||
{ | ||
"model_name_or_path": "qwen/Qwen1.5-MoE-A2.7B", | ||
"dataset_name_or_path": "./data", | ||
"output_dir": "./checkpoints/qwen2moe_sft_ckpts", | ||
"per_device_train_batch_size": 4, | ||
"gradient_accumulation_steps": 4, | ||
"per_device_eval_batch_size": 8, | ||
"eval_accumulation_steps":16, | ||
"num_train_epochs": 3, | ||
"learning_rate": 3e-05, | ||
"warmup_steps": 30, | ||
"logging_steps": 1, | ||
"evaluation_strategy": "epoch", | ||
"save_strategy": "epoch", | ||
"src_length": 1024, | ||
"max_length": 32768, | ||
"bf16": true, | ||
"fp16_opt_level": "O2", | ||
"do_train": true, | ||
"do_eval": true, | ||
"disable_tqdm": true, | ||
"load_best_model_at_end": true, | ||
"eval_with_do_generation": false, | ||
"metric_for_best_model": "accuracy", | ||
"recompute": true, | ||
"save_total_limit": 1, | ||
"tensor_parallel_degree": 8, | ||
"sharding": "stage2", | ||
"pipeline_parallel_degree": 1 | ||
} |
Original file line number | Diff line number | Diff line change | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
|
@@ -294,6 +294,9 @@ | |||||||||
from .deberta_v2.modeling import * | ||||||||||
from .deberta_v2.tokenizer import * | ||||||||||
from .deberta_v2.configuration import * | ||||||||||
from .qwen2moe.modeling import * | ||||||||||
from .qwen2moe.configuration import * | ||||||||||
from .qwen2moe.tokenizer import * | ||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
||||||||||
|
||||||||||
# For faster tokenizer | ||||||||||
from ..utils.import_utils import is_fast_tokenizer_available | ||||||||||
|
Original file line number | Diff line number | Diff line change | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
@@ -0,0 +1,17 @@ | ||||||||||||||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||||||||||||||
# | ||||||||||||||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||||||||||||||
# you may not use this file except in compliance with the License. | ||||||||||||||
# You may obtain a copy of the License at | ||||||||||||||
# | ||||||||||||||
# http://www.apache.org/licenses/LICENSE-2.0 | ||||||||||||||
# | ||||||||||||||
# Unless required by applicable law or agreed to in writing, software | ||||||||||||||
# distributed under the License is distributed on an "AS IS" BASIS, | ||||||||||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||||||||||||
# See the License for the specific language governing permissions and | ||||||||||||||
# limitations under the License. | ||||||||||||||
|
||||||||||||||
from .configuration import QWen2MoeConfig | ||||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. QWen2MoEConfig会不会更好,把Moe都改成MoE。 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 已修改 There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 全部修改为Qwen2和Qwen2Moe,对齐hf |
||||||||||||||
from .modeling import QWen2MoeForCausalLM | ||||||||||||||
from .tokenizer import QWen2MoeTokenizer | ||||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
# coding=utf-8 | ||
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" Qwen2MoE model configuration""" | ||
|
||
from paddlenlp.transformers.configuration_utils import PretrainedConfig | ||
|
||
__all__ = [ | ||
"QWen2MoeConfig", | ||
] | ||
|
||
|
||
class QWen2MoeConfig(PretrainedConfig): | ||
r""" | ||
This is the configuration class to store the configuration of a [`QWen2MoeModel`]. It is used to instantiate a | ||
Qwen2MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration | ||
with the defaults will yield a similar configuration to that of | ||
Qwen1.5-MoE-A2.7B" [Qwen/Qwen1.5-MoE-A2.7B"](https://huggingface.co/Qwen/Qwen1.5-MoE-A2.7B"). | ||
|
||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | ||
documentation from [`PretrainedConfig`] for more information. | ||
|
||
|
||
Args: | ||
vocab_size (`int`, *optional*, defaults to 151936): | ||
Vocabulary size of the Qwen2MoE model. Defines the number of different tokens that can be represented by the | ||
`inputs_ids` passed when calling [`QWen2MoeModel`] | ||
hidden_size (`int`, *optional*, defaults to 2048): | ||
Dimension of the hidden representations. | ||
intermediate_size (`int`, *optional*, defaults to 5632): | ||
Dimension of the MLP representations. | ||
num_hidden_layers (`int`, *optional*, defaults to 24): | ||
Number of hidden layers in the Transformer encoder. | ||
num_attention_heads (`int`, *optional*, defaults to 16): | ||
Number of attention heads for each attention layer in the Transformer encoder. | ||
num_key_value_heads (`int`, *optional*, defaults to 16): | ||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If | ||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | ||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | ||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | ||
by meanpooling all the original heads within that group. For more details checkout [this | ||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`. | ||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | ||
The non-linear activation function (function or string) in the decoder. | ||
max_position_embeddings (`int`, *optional*, defaults to 32768): | ||
The maximum sequence length that this model might ever be used with. | ||
initializer_range (`float`, *optional*, defaults to 0.02): | ||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | ||
rms_norm_eps (`float`, *optional*, defaults to 1e-06): | ||
The epsilon used by the rms normalization layers. | ||
use_cache (`bool`, *optional*, defaults to `True`): | ||
Whether or not the model should return the last key/values attentions (not used by all models). Only | ||
relevant if `config.is_decoder=True`. | ||
tie_word_embeddings (`bool`, *optional*, defaults to `False`): | ||
Whether the model's input and output word embeddings should be tied. | ||
rope_theta (`float`, *optional*, defaults to 10000.0): | ||
The base period of the RoPE embeddings. | ||
use_sliding_window (`bool`, *optional*, defaults to `False`): | ||
Whether to use sliding window attention. | ||
sliding_window (`int`, *optional*, defaults to 4096): | ||
Sliding window attention (SWA) window size. If not specified, will default to `4096`. | ||
max_window_layers (`int`, *optional*, defaults to 28): | ||
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention. | ||
attention_dropout (`float`, *optional*, defaults to 0.0): | ||
The dropout ratio for the attention probabilities. | ||
decoder_sparse_step (`int`, *optional*, defaults to 1): | ||
The frequency of the MoE layer. | ||
moe_intermediate_size (`int`, *optional*, defaults to 1408): | ||
Intermediate size of the routed expert. | ||
shared_expert_intermediate_size (`int`, *optional*, defaults to 5632): | ||
Intermediate size of the shared expert. | ||
num_experts_per_tok (`int`, *optional*, defaults to 4): | ||
Number of selected experts. | ||
num_experts (`int`, *optional*, defaults to 60): | ||
Number of routed experts. | ||
norm_topk_prob (`bool`, *optional*, defaults to `False`): | ||
Whether to normalize the topk probabilities. | ||
output_router_logits (`bool`, *optional*, defaults to `False`): | ||
Whether or not the router logits should be returned by the model. Enabeling this will also | ||
allow the model to output the auxiliary loss, including load balancing loss and router z-loss. | ||
router_aux_loss_coef (`float`, *optional*, defaults to 0.001): | ||
The aux loss factor for the total loss. | ||
|
||
```python | ||
>>> from paddlenlp.transformers import QWen2MoeModel, QWen2MoeConfig | ||
|
||
>>> # Initializing a Qwen2MoE style configuration | ||
>>> configuration = QWen2MoeConfig() | ||
|
||
>>> # Initializing a model from the Qwen1.5-MoE-A2.7B" style configuration | ||
>>> model = QWen2MoeModel(configuration) | ||
|
||
>>> # Accessing the model configuration | ||
>>> configuration = model.config | ||
```""" | ||
|
||
model_type = "qwen2moe" | ||
keys_to_ignore_at_inference = ["past_key_values"] | ||
|
||
def __init__( | ||
self, | ||
vocab_size=151936, | ||
hidden_size=2048, | ||
intermediate_size=5632, | ||
num_hidden_layers=24, | ||
num_attention_heads=16, | ||
num_key_value_heads=16, | ||
hidden_act="silu", | ||
max_position_embeddings=8192, | ||
seq_length=2048, | ||
initializer_range=0.02, | ||
rms_norm_eps=1e-6, | ||
use_cache=True, | ||
use_recompute=False, | ||
recompute_granularity="full", | ||
no_recompute_layers=None, | ||
use_flash_attention=False, | ||
attention_dropout=0.0, | ||
use_fused_rope=False, | ||
rope_theta=1000000.0, | ||
tensor_parallel_output=True, | ||
sequence_parallel=False, | ||
fuse_sequence_parallel_allreduce=False, | ||
pad_token_id=0, | ||
bos_token_id=151643, | ||
eos_token_id=151643, | ||
tie_word_embeddings=False, | ||
use_sliding_window=False, | ||
sliding_window=32768, | ||
max_window_layers=28, | ||
decoder_sparse_step=1, | ||
moe_intermediate_size=1408, | ||
shared_expert_intermediate_size=5632, | ||
num_experts_per_tok=4, | ||
num_experts=60, | ||
norm_topk_prob=False, | ||
output_router_logits=False, | ||
router_aux_loss_coef=0.001, | ||
**kwargs, | ||
): | ||
self.vocab_size = vocab_size | ||
self.max_position_embeddings = max_position_embeddings | ||
self.seq_length = seq_length | ||
self.hidden_size = hidden_size | ||
self.intermediate_size = intermediate_size | ||
self.num_hidden_layers = num_hidden_layers | ||
self.num_attention_heads = num_attention_heads | ||
self.use_sliding_window = use_sliding_window | ||
self.sliding_window = sliding_window | ||
self.max_window_layers = max_window_layers | ||
|
||
self.num_key_value_heads = num_key_value_heads | ||
self.hidden_act = hidden_act | ||
|
||
self.initializer_range = initializer_range | ||
self.rms_norm_eps = rms_norm_eps | ||
|
||
self.use_cache = use_cache | ||
self.use_recompute = use_recompute | ||
self.recompute_granularity = recompute_granularity | ||
self.no_recompute_layers = no_recompute_layers | ||
self.use_flash_attention = use_flash_attention | ||
self.tensor_parallel_output = tensor_parallel_output | ||
self.sequence_parallel = sequence_parallel | ||
self.fuse_sequence_parallel_allreduce = fuse_sequence_parallel_allreduce | ||
|
||
self.pad_token_id = pad_token_id | ||
self.bos_token_id = bos_token_id | ||
self.eos_token_id = eos_token_id | ||
|
||
self.use_fused_rope = use_fused_rope | ||
self.rope_theta = rope_theta | ||
self.attention_dropout = attention_dropout | ||
|
||
# MoE arguments | ||
self.decoder_sparse_step = decoder_sparse_step | ||
self.moe_intermediate_size = moe_intermediate_size | ||
self.shared_expert_intermediate_size = shared_expert_intermediate_size | ||
self.num_experts_per_tok = num_experts_per_tok | ||
self.num_experts = num_experts | ||
self.norm_topk_prob = norm_topk_prob | ||
self.output_router_logits = output_router_logits | ||
self.router_aux_loss_coef = router_aux_loss_coef | ||
|
||
super().__init__( | ||
pad_token_id=pad_token_id, | ||
bos_token_id=bos_token_id, | ||
eos_token_id=eos_token_id, | ||
tie_word_embeddings=tie_word_embeddings, | ||
tensor_parallel_output=tensor_parallel_output, | ||
**kwargs, | ||
) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
确认是否ok,并同步更新 readme 文档