Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add micronet #5251

Merged
merged 1 commit into from
Jan 16, 2022
Merged

add micronet #5251

merged 1 commit into from
Jan 16, 2022

Conversation

bupt906
Copy link
Contributor

@bupt906 bupt906 commented Jan 13, 2022

论文链接
参考代码
我的工作

  • 将pytorch代码转换成paddle代码,按照PaddleOCR的代码风格集成到项目中。
  • 调整代码,使backbone结构输出的维度为[n, 432, 1, 80]
  • 在自己的中文数据集(200W+)上做实验验证结构的可行性:
    • backbone网络结构为MicronetM0时,训练时的IPS值在90左右,训练了30轮,训练时acc为57%左右,验证集准确率为77%。
    • backbone网络结构为MicronetM3时,训练时的IPS值在50左右,非常慢。所以没有进行30轮的训练。
    • 经过分析:模型耗时的地方在作者提出的Dynamic Shift-Max激活函数,我将此激活函数替换成Rule6激活函数, backbone网络结构为MicronetM3时,训练时的IPS值在150左右,训练了30轮,训练时acc为67%左右,验证准确率为82%。
    • 实验环境及参数
      单机4卡(V100,32G),num_workers=8,batch_size=256

micronet.zip
注:由于#5169 cla认证问题,重新提交新的pr。

@paddle-bot-old
Copy link

Thanks for your contribution!

@littletomatodonkey littletomatodonkey merged commit f2d6f54 into PaddlePaddle:dygraph Jan 16, 2022
@Evezerest
Copy link
Collaborator

你好,由于未找到你的信息,请扫描首页微信群二维码加群后@本账号,给你发放奖励

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants