Releases: PaddlePaddle/PaddleSeg
Releases · PaddlePaddle/PaddleSeg
PaddleSeg v2.10.0
🔥[2024-11-05] 添加语义分割领域低代码全流程开发能力:
-
飞桨低代码开发工具PaddleX,依托于PaddleSeg的先进技术,支持了图像分割领域的低代码全流程开发能力:
-
增加图像异常检测算法SFTPM
PaddleSeg v2.9.0
New Project
- Add support for multi-label segmentation, including code for data conversion and result visualization. (#3479)
- Add quantitative awareness training support for PP-LiteSeg, PP-MobileSeg, OCRNet, and SegFormer-B0 to improve model inference speed. (#3457)
- Add MobileSAM model to achieve faster SAM inference (#3346)
New feature
- Add support for mlu, npu, xpu. (#3422)
- Add more devices for TIPC including mlu, npu and xpu. (#3459)
Bug fixes
- Solve the model accuracy problem of pp_mobileseg. (#3443)
- Suppress Paddle 0-dimensional tensor warning. (#3423)
- Replace concat with stack to solve the 0-dimensional tensor problem. (#3356)
- Remove fluid API in rvm. (#3417)
- Fixed multiple problems after stride is supported. (#3412, #3414, #3413)
- Fix tool/model/analyze_model.py analysis flops problem. (#3404)
- Fix image data reading problem, modify paddleseg/transforms/transforms.py. (#3377)
- Fix CityscapesSOTA export error. (#3358)
- Fix auc_roc configuration in predict. (#3446)
- Remove invalid parameter num_class in losses/focal_loss.py. (#3451)
- Fixed syntax issues in nnunet/infer.py. (#3460)
- Optimize labelme2seg code and corresponding documentation. (#3497)
Documentation fix
- Fixed grammatical errors in some Readme documents. (#3463)
- Fixed invalid URL in doc/video.md.(#3452)
- Add data set alias SegDataset.(#3427)
- Update python version configuration of npu-tipc.(#3402)
- Fix the device's configuration in TIPC and solve the mismatch problem between configuration and script function.(#3393)
- Modify model_export_cn.md and add the steps to export dynamic_shape.pdtxt.(#3378)
New Contributors
- @kongdebug made their first contribution in #3075
- @zoooo0820 made their first contribution in #3230
- @TingquanGao made their first contribution in #3263
- @EmmonsCurse made their first contribution in #3318
- @MINGtoMING made their first contribution in #3479
- @ranchongzhi made their first contribution in #3514
PaddleSeg v2.9.0
新项目
- 增加对多标签分割的支持、并提供数据转换代码及结果可视化。(#3479)
- 对PP-LiteSeg、PP-MobileSeg、OCRNet、SegFormer-B0增加量化训练压缩功能,提升推理速度。(#3457)
- 增加MobileSAM模型,实现更快速的SAM推理。(#3346)
新功能
Bug修复
- 解决pp_mobileseg的模型精度问题。(#3443)
- 抑制Paddle 0维tensor警告。(#3423)
- 将concat替换为stack解决0维tensor问题。(#3356)
- 移除rvm中的fluid api。(#3417)
- 修复支持stride后,出现OOM、slice、split等共享显存降速、动转静检查误报问题。(#3412, #3414, #3413)
- 修复tool/model/analyze_model.py中flops的问题。(#3404)
- 修复image数据读入问题,修改paddleseg/transforms/transforms.py。(#3377)
- 修复CityscapesSOTA导出错误。(#3358)
- 修正predict中的auc_roc配置。(#3446)
- 去除losses/focal_loss.py中无效参数num_class。(#3451)
- 修正nnunet/infer.py中的语法问题。(#3460)
- 优化labelme2seg的代码和对应文档。(#3497)
文档修复
- 修正部分Readme文档的语法错误。(#3463)
- 修正doc/video.md中无效url。(#3452)
- 增加数据集别名SegDataset。(#3427)
- 更新npu-tipc的python版本配置。(#3402)
- 修复TIPC中device的配置,解决配置与脚本功能不匹配问题。 (#3393)
- 修改model_export_cn.md,添加导出dynamic_shape.pdtxt的操作步骤。 (#3378)
Full Changelog: v2.8.0...v2.9.0
PaddleSeg v2.8.0
New Features
Vision Foundation Model
- Release Segment Anything Model (SAM) based on PaddlePaddle. As a vision foundation model, SAM has the powerful zero-shot capability to segment any objects and images. SAM can also segment specified object with prompt input.
- Provide a gradio-based demo, which can be easily deployed to demonstrate the function of automatic full-image segmentation.
- Provide a script-based demo, which segments specific objects with a point, box, or mask as prompt input.
Semantic Segmentation
- Release PP-MobileSeg, a lightweight semantic segmentation model for mobile devices. Comparing PP-MobileSeg with the previous SOTA model on ADE20K dataset, the accuracy is increased by 1.5%, the speed is increased by 42.3%, and the number of parameters is reduced by 34.9%.
- Add 7 semantic segmentation models, i.e., MaskFormer, HRFormer, ViT-Adapter, CAE, SegNeXt, K-Net, and LPSNet.
- Enhance model training modules: Add Exponential Moving Average (EMA); refactor the optimizer as a customizable component; decouple Config from Builder, and strictly verify configuration information; move the user scripts into the
tools
directory. - Enhance model deployment modules: Add FastDeploy, a high-performance and all-scenario model deployment solution; add examples and tutorials for C++ deployment on Windows.
Panoptic Segmentation
- Release PanopticSeg v0.5, a universal panoptic segmentation solution.
- Provide full-process development capabilities for panoptic segmentation scenes, and support functions such as dataset preparation, model training, model deployment, and visual analysis.
- Integrate Mask2Former and Panoptic-DeepLab models, and support Cityscapes and MS COCO datasets.
Quality Inspector
- Release QualityInspector v0.5, a full-process solution for industrial quality inspection.
- Support a unified and configurable pipeline that can flexibly use single-task and multi-task models, and integrate PaddleDetection and PaddleSeg models.
- Provide 3 unsupervised quality inspection methods.
- Support model evaluation and analysis functions, and one-click tuning by using the post-processing module.
- Support functions such as data labeling, data analysis, and format conversion in industrial quality inspection scenes, and provide practical examples.
Others
- Release EISeg v1.1, a semi-automatic tool for image annotation. Add manual labeling and automatic pre-labeling functions for detection objects, and support 3 dataset formats (COCO, VOC and YOLO).
- Add a video matting model RVM, and support video matting and background replacement functions. Add a .NET deployment tutorial for matting models. Add DIY applications for ID photos and wedding photos based on PP-Matting.
Bug Fixes
- Fix the precision error of multi-scale evaluation #2933 #2978
- Fix the error of exporting the inference model for ESPNetV2 model #3003
- Fix the error of repeatedly downloading datasets under multi GPUs #3126
- Fix a bug in PortraitNet dataset #3024
新特性
视觉大模型
- 开源飞桨版本视觉大模型Segment Anything Model (SAM)。SAM具有强大的zero-shot能力,可以分割任意物体和图像,也可以使用提示输入分割特定目标。
- 提供基于Gradio的演示Demo,支持本地部署,可以快速体验SAM全图分割功能。
- 提供脚本演示Demo,支持点、框、掩码作为提示输入,快速得到SAM交互分割结果。
语义分割
- 发布超轻量级语义分割SOTA模型PP-MobileSeg,在ADE20K数据集上对比此前模型,精度提升1.5%、速度提升42.3%、参数量减少34.9%。
- 新增7个前沿语义分割模型:MaskFormer、HRFormer、ViT-Adapter、CAE、SegNeXt、K-Net和LPSNet。
- 增强训练功能:新增指数滑动平均EMA;支持自定义Optimizer组件,灵活配置训练超参;解耦Config和Builder,严格校验配置信息;训压推启动脚本统一到
tools
目录下。 - 增强部署功能:新增支持高性能、全场景的模型部署方案FastDeploy;新增Windows上CPP部署的示例和教程。
全景分割
- 发布通用的全景分割方案PanopticSeg v0.5版本。
- 提供全景分割场景的全流程开发能力,打通数据集准备、模型训练、模型推理、可视化分析等功能。
- 集成前沿模型Mask2Former和Panoptic-DeepLab,支持Cityscapes与MS COCO数据集。
工业质检
- 发布工业质检全流程解决方案QualityInspector v0.5版本。
- 支持统一可配置的算法方案,集成飞桨检测分割的能力和模型库,灵活使用单任务模型和多任务串联模型。
- 支持三种无监督异常检测算法。
- 支持工业级指标评测和分析功能,使用后处理模块可以一键调优。
- 支持工业质检场景的数据标注、数据分析、格式转换等功能,提供全流程实践范例。
其他
- 发布高性能智能标注工具EISeg v1.1版本,新增对检测目标的手工标注功能和自动预标注功能,支持COCO、VOC和YOLO的检测标注保存格式。
- 新增视频抠图模型RVM,支持视频预测和背景替换;新增人像抠图.NET部署教程;新增基于PP-Matting的证件照/结婚照DIY应用。
Bug修复
PaddleSeg v2.7.0
New Features
Semantic Segmentation
- Release RTFormer, a real-time semantic segmentation model accepted by NeurIPS 2022. RTFormer combines the advantages of CNN and Transformer modules, and it achieves SOTA trade-off between performance and efficiency on several datasets.
- Release UHRNet, a semantic segmentation model. The segmentation accuracy of UHRNet is higher than that of HRNet on Cityscapes.
- Add 2 semantic segmentation models, i.e., TopFormer and MscaleOCRNet-PSA.
- Enhance model training module, i.e., training for single channel images, setting different learning rate for backbone and head.
- Add the tutorials of config preparation and training tricks.
Image Matting
- Release PP-MattingV2, a real-time human matting model with SOTA performance. Compared to previous models, the mean error is reduced by 17.91%, the inference speed is improved by 44.6% on GPU.
- Refine the tutorials and build the benchmark of Matting models.
3D Medical Segmentation
- Release MedicalSegV2, a superior 3D medical image segmentation solution.
- Release an intelligent annotation toolkit called EISeg-Med3D.
- Release an optimized implementation of nnUNet named nnUNet-D, which has model deployment module.
- Add 3 segmentation models, i.e., SwinUnet, TransUnet and nnFormer.
- Refine the tutorials, add detailed information of model zoo and model introduction.
新特性
语义分割
- 发布轻量级语义分割模型RTFormer,结合CNN和Transformer模块的优势,在公开数据集上实现性能SOTA,并发表于NeurIPS 2022。
- 发布高精度语义分割模型UHRNet,Cityscapes数据集上精度超越HRNet。
- 新增2个语义分割模型,TopFormer和MscaleOCRNet-PSA。
- 增强训练功能,支持单通道图像训练,支持Backbone和Head设置不同学习率。
- 优化安装步骤和文档,新增准备配置文件、高阶训练技巧的教程。
深度抠图
- 发布自研的轻量级抠图模型PP-MattingV2,推理速度提升44.6%,平均误差减小17.91%,超越此前SOTA模型,支持零成本开箱即用。
- 升级文档和教程,构建模型库Benchmark。
3D医疗分割
- 发布3D医疗影像分割方案MedicalSegV2。
- 发布3D医疗影像交互式标注工具EISeg-Med3D,具有算法创新、高效准确、用户友好等优势。
- 新增前沿高精度分割方案nnUNet-D,涵盖数据分析、超参优化、模型构建、模型训练、模型融合等模块,而且新增模型部署的能力。
- 新增3个医疗影像分割模型,SwinUnet、TransUnet和nnFormer,精度超过原论文最高达到3.6%。
- 升级医疗分割的文档和教程,丰富ModelZoo和模型原理说明。
Bug Fix
- Fix data transforms error in PanopticDeeplab. #2381
- Fix evaluation error for cityscapes dataset in PanopticDeeplab. #2564
- Replace
_C_ops
with_legacy_C_ops
for basic api. #2494 - Check and synchronize the num_classes in config. #2477
- Replace
with_softmax
andwith_argmax
withoutput_op
in export.py. #2547 - Correct the use of
dist.all_reduce
in distributed training. #2606 - Fix the error of releasing dataloader. #2650
PaddleSeg v2.6.0
New Features
Semantic Segmentation
- Release PP-HumanSeg v2, an off-the-shelf human segmentation model. It achieves 64.26 FPS on the mobile device, which is 45.5% faster than before.
- Release PSSL, a novel pre-training method, including a large dataset that consists of 1.2M+ pseudo semantic segmentation labels (PSSL) corresponding to the whole ImageNet training set. It boosts the performances of various models on all downstream tasks.
- Release the industrial model series: high-accuracy models, light-weight models, and super light-weight models, to help developers pick up the most suitable one.
- Add 2 segmentation models: MobileNetV3_LRASPP,UperNet.
- Add 1 initialization method: Xavier Uniform.
- Upgrade data reading pipeline that allows using dict to pass the data.
- Support PaddleSMRT which is a model selection tool that help developers to choose the best model according to the actual requirements.
- Upgrade the homepage, and provide more easy-to-use quick-start tutorial.
Intelligent Labelling
- Release EISeg v1.0, the stable-version semi-automatic tool for image, video and 3D slice data annotation. It achieves "Once for All" (training once, and labelling all) performance.
- Add interactive video object segmentation for general scenes, this work is based on EISeg interactive segmentation model and MiVOS.
- Add 3D segmentation capabilities for abdominal multi-organ and CT vertebral data, and provides 3D visualization tools.
Image Matting
- Release PP-Matting source code and the pre-trained models.
- Add the pymatting package that provides five traditional matting methods including ClosedFormMatting、KNNMatting, FastMatting, LearningBaseMatting, and RandomWalksMatting.
- Add GCA model, update the ppmatting architecture, and support user-specified metrics evaluations.
3D Medical Segmentation
- Add UNETR,we achieve Dice=71.8% in MSD-brain, which is 0.7% higher than the original implementation.
- Add slicing window prediction to support large-scale input, which improves the inference accuracy.
新特性
语义分割
- 发布实时人像分割模型PP-HumanSeg v2,移动端推理速度提升45.5%、达到64.26 FPS,分割精度更高、通用型更强、零成本开箱即用。
- 发布120多万张ImageNet分割伪标签数据集,以及预训练方法PSSL,全面提升分割模型在下游任务上的性能。
- 发布产业级语义分割模型,包括高精度、轻量级和超轻量级系列。
- 新增2个语义分割模型,MobileNetV3_LRASPP,UperNet。
- 新增1个初始化方法:Xavier Uniform。
- 升级数据流程,通过字典形式进行数据的传递,提升数据流的可读性、灵活性与扩展性。
- 接入飞桨产业模型选型工具PaddleSMRT,可以根据产业落地的诸多诉求,分析数据特点,推荐合适的模型和方案。
- 全新升级文档主页,全流程使用教程更加详实。
智能标注
- 发布高性能智能标注工具EISeg v1.0正式版,实现一次训练万物可标,加速提升图像、视频、3D医疗影像等领域的分割标注效率。
- 新增用于通用场景视频交互式分割能力,以EISeg交互式分割模型及MiVOS算法为基础,全面提升视频标注体验。
- 新增用于腹腔多器官及CT椎骨数据3D分割能力,并提供3D可视化工具,给予医疗领域3D标注新的思路。
深度抠图
- 开源PP-Matting代码和预训练模型
- 新增pymatting支持,引入ClosedFormMatting、KNNMatting、FastMatting、LearningBaseMatting和RandomWalksMatting传统机器学习算法。
- 新增GCA模型,更新目录结构,支持指定指标进行评估。
3D医疗分割
- 新增前沿模型UNETR,在MSD-brain 上Dice为71.8%,高于原论文0.7%。
- 新增滑窗预测功能,支持大图推理提升精度。
Bug Fix
PaddleSeg v2.5.0
New Features
- Release PP-LiteSeg, a superior real-time semantic segmentation model. It achieves 273.6FPS on 1080Ti.
- Release PP-Matting, a trimap-free image matting model for extremely fine-grained segmentation. It achieves SOTA performance on Composition-1k and Distinctions-646.
- Release MedicalSeg, a newly easy-to-use toolkit for 3D medical imaging. It supports the whole segmentation process including data preprocessing, model training, and model deployment, and provides high-accuracy models on lung and spine segmentation.
- Release EISeg v0.5, with three more interactive models for chest Xray, MRI spine and defect inspection.
- Add 5 semantic segmentation models: ENet, CCNet, DDRNet, GloRe, PP-LiteSeg.
- Add 1 loss function: MultiClassFocalLoss.
- Support AMP training, including O1 and O2 levels.
新特性
- 发布超轻量级语义分割模型PP-LiteSeg技术报告以及开源模型,在1080Ti GPU上推理速度达到273.6FPS。
- 发布高精度抠图模型PP-Matting技术报告以及开源模型,在Composition-1K和Distinctions-646上实现SOTA。
- 发布3D医疗影像开发套件MedicalSeg,支持数据预处理、模型训练、模型部署等全流程开发,并提供肺部、椎骨数据上的高精度分割模型。
- 发布交互式分割工具EISeg v0.5版本,新增胸片X光、医学椎骨、工业质检标注垂类方向。
- 新增5个分割模型:ENet, CCNet, DDRNet, GloRe, PP-LiteSeg。
- 新增1个损失函数:MultiClassFocalLoss。
- 完整支持混合精度训练能力,包括O1、O2模式训练、边训边评估。
Bug Fix
- Add init weights for hrnet_contrast. #1746
- Fix the overflow error in calculating kappa. #1788
- Fix GINet interpolate problem. #1846
- Fix the error of nonetype object for quant. #1854
- Fix Enet export and infer problem. #1919
- Fix SemanticConnectivityLoss bug on cpu. #1940
- Fix import error of tensor_fusion. #2023
- Fix a prediction bug without val dataset. #1816
New Contributors
- @xmba15 made their first contribution in #1743
- @ChenjieXu made their first contribution in #1791
- @ykkk2333 made their first contribution in #1815
- @windstamp made their first contribution in #1926
Full Changelog: v2.2.0...v2.5
PaddleSeg v2.4.0
New Features
- Release the upgraded interactive segmentation tool, EISeg 0.4, adding Remote Sensing and Medical annotation.
- Publish the PP-HumanSeg paper for portrait segmentation, including semantic connectivity loss and large-scale video conferencing dataset named PP-HumanSeg14K.
- Release PP-HumanMatting for extremely fine-grained human segmentation.
- Provide 2 tutorials for domain adaptation algorithm PixMatch, and Lane Segmentation.
- Add 9 semantic segmentation models: ESPNetV1, ESPNetV2, HRNet_W48_Contrast, DMNet, ENCNet, PFPNNet, FastFCN, BiSeNetV1, and SegMenter.
- Add 2 loss functions: SECrossEntropyLoss,SemanticConnectivityLoss.
- Add 1 transform method: RandomCenterCrop.
- Add 4 medical segmentation datasets: STARE,DRIVE,CHASE DB1,HRF, and their pretrained models in UNet.
- Provide a comprehensive performance table for all segmentation models in PaddleSeg.
新特性
- 发布交互式分割工具EISeg v0.4版本,支持静态图预测,新增遥感、医疗标注垂类方向。
- 发布人像分割论文PP-HumanSeg,并开源连通性学习(SCL)方法和大规模视频会议数据集PP-HumanSeg14K。
- 开源人像发丝级抠图Matting算法,PP-HumanMatting。
- 新增2个分割案例:无监督领域自适应模型PixMatch,车道线分割。
- 新增9个分割模型:ESPNetV1, ESPNetV2, HRNet_W48_Contrast, DMNet, ENCNet, PFPNNet, FastFCN, BiSeNetV1, 以及Transformer系列模型SegMenter。
- 新增2个损失函数:SECrossEntropyLoss,SemanticConnectivityLoss。
- 新增1个数据增强方法:RandomCenterCrop。
- 新增医疗分割数据集STARE,DRIVE,CHASE DB1,HRF,并提供UNet预训练模型。
- 提供分割模型性能对比图,帮助用户全面了解分割模型性能,方便模型选型。
Bug Fix
- Fix the error of saving image in infer.py #1513
- Fix GINet export bugs #1518
- Remove flip_horizontal when aug_eval is True #1559
- Replace item with numpy in segformer #1579
- Add CocoStuff in init.py #1604
- Fix DICE format and a bug #1630
- Solve the TRT inference problem when dynamic shape is not set #1640
- Fix ENCNet export problem #1677
- Fix weighted cross_entropy bug when 255 in label #1499
- Fix CityscapesSOTA incompatibility in PaddlePaddle 2.2 #1595
New Contributors
- @acdart made their first contribution in #1195
- @txyugood made their first contribution in #1132
- @CuberrChen made their first contribution in #1305
- @neonhuang made their first contribution in #1405
- @mmglove made their first contribution in #1495
- @justld made their first contribution in #1490
- @qianbin1989228 made their first contribution in #1538
- @JiehangXie made their first contribution in #1481
- @Fate-Sunshine made their first contribution in #1549
- @0x45f made their first contribution in #1527
- @ucsk made their first contribution in #1584
- @louis-she made their first contribution in #1604
- @simuler made their first contribution in #1625
- @ETTR123 made their first contribution in #1638
- @JamesLim-sy made their first contribution in #1683
- @Thudjr made their first contribution in #1712
- @Mrwow made their first contribution in #1721
Full Changelog: v2.2.0...v2.4
PaddleSeg v2.3.0
新特性
- 发布交互式分割SOTA算法论文,EdgeFlow。
- 开源精细化分割Matting算法,DIM和MODNet。
- 新增分割模型压缩高阶功能,蒸馏和量化。
- 提供基于Paddle Inference的C++的分割模型预测指南。
- 提供Paddle Servering部署和导出ONNX模型的示例和指南。
- 新增经典模型SegNet,PointRend,图结构模型GINet,轻量级模型STDC,轻量级Transformer系列模型SegFormer。
- 新增损失函数:RMI Loss,Focal Loss,KL Loss,Detail Aggregate Loss, Point CE Loss。
- 支持自定义任意类别数量的color map,提升可视化效果。
问题修复
- #1240 修复CrossEntropyLoss在加权情况下的值越界问题。
- #1219 #1385 修复未训练完完整epoch退出时,dataloader随机抛出段错误的问题。
- #1113 修复多进程dataloader在不同epoch下随机数种子相同的bug。
New Features
- Published a paper on interactive segmentation named EdgeFlow.
- Released two Matting algorithms, DIM and MODNet.
- Provided advanced features on segmentation model compression, Knowledge Distillation and “Molde Quantization”.
- Provided the model inference tutorial based on Paddle Inference and Paddle Serving.
- Provided the ONNX exporting tutorial, which allows cross-platform deployment.
- Added five models, SegNet, PointRend, GINet, STDC, SegFormer.
- Added RMI Loss,Focal Loss,KL Loss,Detail Aggregate Loss, Point CE Loss.
- Support customized color map.
Bug Fix
PaddleSeg v2.2.0
新特性
- CVPR 2021 AutoNUE语义分割赛道 冠军方案 开源!
- 全新开源的超轻量级人像分割模型PPSeg,基于自采的大规模半身人像数据训练,适用于 视频会议 等半身像场景
- 新增交互式分割应用场景,基于seed-based SOTA模型RITM 提供了基于 人像 和 COCO+LVIS 训练的权重
- 全新发布的交互式分割工具EISeg,可用于快速标注数据
- 新增人像分割领域的经典模型 PortraitNet,新增Transformer系列 SOTA模型 SwinTransformer
- 优化模型预测的后处理逻辑,提升模型预测精度
问题修复
- #1123 修复模型剪枝时内存不足的问题
- #1100 修复CrossEntropyLoss 使用 weight权重时训练无法收敛的问题
- #1082 修复模型剪枝脚本运行失败的问题
- #1081 修复了Windows系统下预测脚本输出保存路径不正确的问题
- #1078 修复多卡训练模型时DataLoader未设置work_init_fn导致多进程中所使用同样的random seed的问题
- #34c1bbf、#30860e 修复DecoupledSegNet和SFNet导出失败的问题
致谢
- 非常感谢 yazheng0307 进行了文档的整理工作 #1075
- 非常感谢 parap1uie-s 提交了修复代码 #1078
- 非常感谢 AlwaysGemini 提交了修复代码 #1081、#1082
- 非常感谢 geoyee、linhandev贡献了交互式分割工具EISeg
- 非常感谢 txyugood 贡献了PortraitNet模型
New Features
- CVPR 2021 AutoNUE Semantic Segmentation Track Technical Report is open sourced!
- An ultra-lightweight portrait segmentation model named PPSeg is open sourced, which is training based on large-scale portrait data and suitable for video conference
- We provide interactive segmentation application scenarios, based on the seed-based SOTA model RITM and also provide weights training on portrait and COCO+LVIS.
- A newly released interactive segmentation tool EISeg can be used to quickly label data
- Added the popular model PortraitNet in the field of portrait segmentation, and added the Transformer series SOTA model SwinTransformer
- We optimize the post-processing logic of model prediction to improve model prediction accuracy
Bug Fix
- #1123 Fix the problem of insufficient memory during model pruning
- #1100 Fix the problem that the weighted CrossEntropyLoss cannot converge during training
- #1082 Fix the problem that the model pruning script fails to run
- #1081 Fix the problem that the save path of the prediction script under Windows system is incorrect
- #1078 Fix an issue where the DataLoader did not set work_init_fn when training the model in multi-card, which caused the same random seed to be used in multiple processes
- #34c1bbf/#30860e Fix the problem that DecoupledSegNet and SFNet cannot be successfully exported
Thanks
- Thank you very much yazheng0307 for organizing the documents #1075
- Thank you very much parap1uie-s for submitting the repair code #1078
- Thank you very much AlwaysGemini for submitting the repair code #1081/#1082
- Thank you very much txyugood for contributing the PortraitNet model
- Thank you very much geoyee/linhandev for contributing the interactive segmentation tool EISeg
PaddleSeg v2.1.0
新特性
- 语义分割方向新增医疗分割模型UNet3+、轻量级模型SFNet、ShuffleNetV2等模型。
- 全新增加 全景分割 场景,支持训练、评估、预测以及可视化等能力,新增Anchor-Free的SOTA模型Panoptic-DeepLab。
- 完善部署能力,新增 移动端部署 能力和 web端部署 能力,并支持添加后处理算子(argmax/softmax)。
- 高精度的人像分割模型humanseg升级为动态图版,并显著优化边缘锯齿问题。
- 升级学习率配置模块,新增10种学习率策略,涵盖了业界主流学习率调度方式。
- 新增Weighted Cross Entropy Loss、L1 Loss、MSE Loss,适用于不同场景下的模型优化。
Bug修复
- #1016 修复NonLocal2D模块在非gaussian模式下shape不一致的问题。
- #1007 修复RandomRotation和RandomScaleAspect在未传入Label时无法正确调用的问题。
- #1006 修复EMANet无法进行单卡训练的问题。
- #995 修复了PaddleSeg在PaddlePaddle 2.1版本中存在的兼容性问题。
- #980 修复DecoupledSegNet在PaddlePaddle 2.1版本中训练失败的问题。
- #975 修复滑窗预测图像小于窗口大小时无法正确预测的问题。
- #971 修复ResizeByLong进行数据增强,在预测时没有正确恢复尺寸的问题。
New Features
- New semantic segmentation models such as the medical segmentation model UNet3+, the lightweight model SFNet, and ShuffleNetV2 have been added.
- Newly added panoramic segmentation scenes, supporting training, evaluation, prediction and visualization capabilities, and new Anchor-Free SOTA model Panoptic-DeepLab.
- Improve deployment capabilities, add mobile deployment and web deployment capabilities, and support the addition of post-processing operators (argmax/softmax).
- The high-precision portrait segmentation model humanseg is upgraded to dynamic graph version, and the edge aliasing problem is significantly optimized.
- Upgrade the learning rate configuration module and add 10 new learning rate strategies, covering the mainstream learning rate scheduling methods in the industry.
- Added Weighted Cross Entropy Loss, L1 Loss, and MSE Loss, which are suitable for model optimization in different scenarios.
Bug Fix
- #1016 Fix the problem that the shape of NonLocal2D module is inconsistent in non-gaussian mode.
- #1007 Fixed an issue where RandomRotation and RandomScaleAspect could not be called correctly when Label was not passed in.
- #1006 Fix the problem that EMANet cannot be trained in single card.
- #995 Fixed the compatibility issue of PaddleSeg in PaddlePaddle 2.1 version.
- #980 Fixed the problem that DecoupledSegNet failed to train in PaddlePaddle 2.1.
- #975 Fix the problem that the sliding window prediction image cannot be correctly predicted when the image is smaller than the window size.
- #971 Fix the problem that ResizeByLong does not restore the size correctly in predict phase.