This is the official repository for the paper entitled "Deep Learning for Video Anomaly Detection: A Review".
- Existing Reviews
- Our Taxonomy
- 1. Semi-Supervised Video Anomaly Detection
- 2. Weakly Supervised Video Anomaly Detection
- 3. Fully Supervised Video Anomaly Detection
- 4. Unsupervised Video Anomaly Detection
- 5. Open-Set Supervised Video Anomaly Detection
- Performance Comparison
- Citation
Reference | Year | Venue | Main Focus | Main Categorization | UVAD | WVAD | SVAD | FVAD | OVAD | LVAD | IVAD |
---|---|---|---|---|---|---|---|---|---|---|---|
Ramachandra et al. | 2020 | IEEE TPAMI | Semi-supervised single-scene VAD | Methodology | Γ | Γ | β | Γ | Γ | Γ | Γ |
Santhosh et al. | 2020 | ACM CSUR | VAD applied on road traffic | Methodology | β | Γ | β | β | Γ | Γ | Γ |
Nayak et al. | 2021 | IMAVIS | Deep learning driven semi-supervised VAD | Methodology | Γ | Γ | β | Γ | Γ | Γ | Γ |
Tran et al. | 2022 | ACM CSUR | Semi&weakly supervised VAD | Architecture | Γ | Γ | β | Γ | Γ | Γ | Γ |
Chandrakala et al. | 2023 | Artif. Intell. Rev. | Deep model-based one&two-class VAD | Methodology&Architecture | Γ | β | β | β | Γ | Γ | Γ |
Liu et al. | 2023 | ACM CSUR | Deep models for semi&weakly supervised VAD | Model Input | β | β | β | β | Γ | Γ | Γ |
Our survey | 2024 | - | Comprehensive VAD taxonomy and deep models | Methodology, Architecture, Refinement, Model Input, Model Output | β | β | β | β | β | β | β |
UVAD=Unsupervised VAD, WVAD=Weakly supervised VAD, SVAD=Semi-supervised VAD, FVAD=Fully supervised VAD, OVAD=Open-set supervised VAD, LVAD: Large-model based VAD, IVAD: Interpretable VAD
Frame-Level RGB
ποΈ 2016
ποΈ 2017
-
π ConvLSTM-AE:Remembering history with convolutional LSTM for anomaly detection, π°
ICCV
code -
π STAE: Spatio-temporal autoencoder for video anomaly detection, π°
ACM MM
-
π AnomalyGAN: Abnormal event detection in videos using generative adversarial nets, π°
ICIP
ποΈ 2019
Patch-Level RGB
ποΈ 2015
- π AMDN:Learning deep representations of appearance and motion for anomalous event detection, π°
BMVC
ποΈ 2017
-
π AMDN2:Detecting anomalous events in videos by learning deep representations of appearance and motion, π°
CVIU
-
π Deep-cascade:Deep-cascade: Cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes, π°
TIP
ποΈ 2018
- π S$^2$-VAE:Generative neural networks for anomaly detection in crowded scenes, π°
TIFS
ποΈ 2019
- π DeepOC:A deep one-class neural network for anomalous event detection in complex scenes, π°
TNNLS
ποΈ 2020
- π GM-VAE:Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder, π°
CVIU
Object-Level RGB
ποΈ 2017
- π FRCN:Joint detection and recounting of abnormal events by learning deep generic knowledge, π°
ICCV
ποΈ 2019
- π ObjectAE:Object-centric auto-encoders and dummy anomalies for abnormal event detection in video, π°
CVPR
code
ποΈ 2021
- π HF$^2$-VAD:A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction, π°
ICCV
code
ποΈ 2022
-
π HSNBM:Hierarchical scene normality-binding modeling for anomaly detection in surveillance videos, π°
ACM MM
code -
π BDPN:Comprehensive regularization in a bi-directional predictive network for video anomaly detection, π°
AAAI
-
π ER-VAD:Evidential reasoning for video anomaly detection, π°
ACM MM
ποΈ 2023
Frame Level
ποΈ 2018
- π FuturePred:Future frame prediction for anomaly detectionβa new baseline, π°
CVPR
code
ποΈ 2020
-
π FSCN:Fast sparse coding networks for anomaly detection in videos, π°
PR
codeποΈ 2021
-
π F$^2$PN:Future frame prediction network for video anomaly detection, π°
TPAMI
code -
π AMMC-Net:Appearance-motion memory consistency network for video anomaly detection, π°
AAAI
code
ποΈ 2022
- π STA-Net:Learning task-specific representation for video anomaly detection with spatialtemporal attention, π°
ICASSP
ποΈ 2023
- π AMSRC:A video anomaly detection framework based on appearance-motion semantics representation consistency, π°
ICASSP
Patch Level
ποΈ 2019
- π DeepOC:A deep one-class neural network for anomalous event detection in complex scenes, π°
TNNLS
ποΈ 2020
-
π ST-CaAE:Spatial-temporal cascade autoencoder for video anomaly detection in crowded scenes, π°
TMM
-
π Siamese-Net:Learning a distance function with a siamese network to localize anomalies in videos, π°
WACV
Object Level
ποΈ 2021
- π HF$^2$-VAD:A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction, π°
ICCV
code
ποΈ 2022
-
π ER-VAD:Evidential reasoning for video anomaly detection, π°
ACM MM
-
π Accurate-Interpretable-VAD:Attribute-based representations for accurate and interpretable video anomaly detection, π°
Arxiv
code
ποΈ 2023
- π AMSRC:A video anomaly detection framework based on appearance-motion semantics representation consistency, π°
ICASSP
ποΈ 2019
- π MPED-RNN:Learning regularity in skeleton trajectories for anomaly detection in videos, π°
CVPR
code
ποΈ 2020
-
π GEPC:Graph embedded pose clustering for anomaly detection, π°
CVPR
code -
π MTTP:Multi-timescale trajectory prediction for abnormal human activity detection, π°
WACV
homepage
ποΈ 2021
-
π NormalGraph:Normal graph: Spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection, π°
Neurocomputing
-
π HSTGCNN:A hierarchical spatio-temporal graph convolutional neural network for anomaly detection in videos, π°
TCSVT
code
ποΈ 2022
-
π TSIF:A two-stream information fusion approach to abnormal event detection in video, π°
ICASSP
-
π STGCAE-LSTM:Human-related anomalous event detection via spatial-temporal graph convolutional autoencoder with embedded long short-term memory network, π°
Neurocomputing
-
π STGformer:Hierarchical graph embedded pose regularity learning via spatiotemporal transformer for abnormal behavior detection, π°
ACM MM
ποΈ 2023
-
π STG-NF:Normalizing flows for human pose anomaly detection, π°
ICCV
code -
π MoPRL:Regularity learning via explicit distribution modeling for skeletal video anomaly detection, π°
TCSVT
-
π MoCoDAD:Multimodal motion conditioned diffusion model for skeleton-based video anomaly detection, π°
ICCV
code
ποΈ 2024
- π TrajREC:Holistic representation learning for multitask trajectory anomaly detection, π°
WACV
ποΈ 2018
- π FuturePred:Future frame prediction for anomaly detectionβa new baseline, π°
CVPR
code
ποΈ 2019
- π DeepOC:A deep one-class neural network for anomalous event detection in complex scenes, π°
TNNLS
ποΈ 2021
- π HF$^2$-VAD:A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction, π°
ICCV
code
ποΈ 2024
- π EOGT:Eogt: Video anomaly detection with enhanced object information and global temporal dependency, π°
TOMM
Reconstruction
ποΈ 2016
ποΈ 2017
- π ConvLSTM-AE:Remembering history with convolutional LSTM for anomaly detection, π°
ICCV
code
ποΈ 2018
- π S$^2$-VAE:Generative neural networks for anomaly detection in crowded scenes, π°
TIFS
ποΈ 2019
ποΈ 2020
-
π ClusterAE:Clustering driven deep autoencoder for video anomaly detection, π°
ECCV
-
π SIGnet:Anomaly detection with bidirectional consistency in videos, π°
TNNLS
ποΈ 2021
- π SSR-AE:Self-supervision-augmented deep autoencoder for unsupervised visual anomaly detection, π°
TCYB
ποΈ 2023
- π MoPRL:Regularity learning via explicit distribution modeling for skeletal video anomaly detection, π°
TCSVT
Prediction
ποΈ 2018
- π FuturePred:Future frame prediction for anomaly detectionβa new baseline, π°
CVPR
code
ποΈ 2019
- π Attention-driven-loss:Attention-driven loss for anomaly detection in video surveillance, π°
TCSVT
code
ποΈ 2020
- π Multispace:Normality learning in multispace for video anomaly detection, π°
TCSVT
ποΈ 2021
-
π HF$^2$-VAD:A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction, π°
ICCV
code -
π AMMC-Net:Appearance-motion memory consistency network for video anomaly detection, π°
AAAI
code -
π ROADMAP:Robust unsupervised video anomaly detection by multipath frame prediction, π°
TNNLS
-
π AEP:Abnormal event detection and localization via adversarial event prediction, π°
TNNLS
ποΈ 2022
-
π STGformer:Hierarchical graph embedded pose regularity learning via spatiotemporal transformer for abnormal behavior detection, π°
ACM MM
-
π OGMRA:Object-guided and motion-refined attention network for video anomaly detection, π°
ICME
ποΈ 2023
-
π STGCN:Spatial-temporal graph convolutional network boosted flow-frame prediction for video anomaly detection, π°
ICASSP
-
π AMP-NET:Amp-net: Appearance-motion prototype network assisted automatic video anomaly detection system, π°
TII
Visual Cloze Test
ποΈ 2020
- π VEC:Cloze test helps: Effective video anomaly detection via learning to complete video events, π°
ACM MM
code
ποΈ 2023
-
π USTN-DSC:Video event restoration based on keyframes for video anomaly detection, π°
CVPR
-
π VCC:Video anomaly detection via visual cloze tests, π°
TIFS
Jigsaw Puzzles
ποΈ 2022
- π STJP:Video anomaly detection by solving decoupled spatio-temporal jigsaw puzzles, π°
ECCV
code
ποΈ 2023
-
π MPT:Video anomaly detection via sequentially learning multiple pretext tasks, π°
ICCV
-
π SSMTL++:Ssmtl++: Revisiting self-supervised multi-task learning for video anomaly detection, π°
CVIU
Contrastive Learning
ποΈ 2020
- π CAC:Cluster attention contrast for video anomaly detection, π°
ACM MM
ποΈ 2021
- π TAC-Net:Abnormal event detection using deep contrastive learning for intelligent video surveillance system, π°
TII
ποΈ 2022
- π LSH:Learnable locality-sensitive hashing for video anomaly detection, π°
TCSVT
Denoising
ποΈ 2020
- π Adv-AE:Adversarial 3d convolutional autoencoder for abnormal event detection in videos, π°
TMM
ποΈ 2021
- π NM-GAN:Nm-gan: Noise-modulated generative adversarial network for video anomaly detection, π°
PR
Deep Sparse Coding
ποΈ 2017
- π Stacked-RNN, A revisit of sparse coding based anomaly detection in stacked RNN frameworkπ°
ICCV
code
ποΈ 2019
-
π Anomalynet:Anomalynet: An anomaly detection network for video surveillance, π°
TIFS
code -
π sRNN-AE:Video anomaly detection with sparse coding inspired deep neural networks, π°
TPAMI
code
ποΈ 2020
Patch Inpainting
ποΈ 2021
ποΈ 2022
- π SSPCAB:Self-supervised predictive convolutional attentive block for anomaly detection, π°
CVPR
code
ποΈ 2023
- π SSMCTB:Self-supervised masked convolutional transformer block for anomaly detection, π°
TPAMI
code
ποΈ 2024
- π AED-MAE:Self-distilled masked auto-encoders are efficient video anomaly detectors, π°
CVPR
code
Multiple Task
ποΈ 2017
- π STAE: Spatio-temporal autoencoder for video anomaly detection, π°
ACM MM
ποΈ 2019
-
π MPED-RNN:Learning regularity in skeleton trajectories for anomaly detection in videos, π°
CVPR
-
π AnoPCN:Anopcn: Video anomaly detection via deep predictive coding network, π°
ACM MM
ποΈ 2021
- π Multitask:Anomaly detection in video via self-supervised and multi-task learning, π°
CVPR
homepage
ποΈ 2022
-
π HSNBM:Hierarchical scene normality-binding modeling for anomaly detection in surveillance videos, π°
ACM MM
code -
π LSH:Learnable locality-sensitive hashing for video anomaly detection, π°
TCSVT
-
π AMAE:Appearance-motion united auto-encoder framework for video anomaly detection, π°
TCAS-II
-
π STM-AE:Learning appearance-motion normality for video anomaly detection, π°
ICME
-
π SSAGAN:Self-supervised attentive generative adversarial networks for video anomaly detection, π°
TNNLS
ποΈ 2023
-
π MPT:Video anomaly detection via sequentially learning multiple pretext tasks, π°
ICCV
-
π SSMTL++:Ssmtl++: Revisiting self-supervised multi-task learning for video anomaly detection, π°
CVIU
ποΈ 2024
- π MGSTRL:Multi-scale video anomaly detection by multi-grained spatiotemporal representation learning, π°
CVPR
One-Class Classifier
ποΈ 2015
- π AMDN:Learning deep representations of appearance and motion for anomalous event detection, π°
BMVC
ποΈ 2018
ποΈ 2019
- π DeepOC:A deep one-class neural network for anomalous event detection in complex scenes, π°
TNNLS
- π GODS:Gods: Generalized one-class discriminative subspaces for anomaly detection, π°
ICCV
ποΈ 2021
Gaussian Classifier
ποΈ 2018
- π Deep-anomaly:Deep-anomaly: Fully convolutional neural network for fast anomaly detection in crowded scenes, π°
CVIU
ποΈ 2020
- π GM-VAE:Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder, π°
CVIU
ποΈ 2021
- π Deep-cascade:Deep-cascade: Cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes, π°
TIP
Adversarial Classifier
ποΈ 2018
-
π ALOCC:Adversarially learned one-class classifier for novelty detection, π°
CVPR
code -
π AVID:Avid: Adversarial visual irregularity detection, π°
ACCV
code
ποΈ 2020
-
π ALOCC2:Deep end-to-end one-class classifier, π°
TNNLS
-
π OGNet:Old is gold: Redefining the adversarially learned one-class classifier training paradigm, π°
CVPR
code
ποΈ 2022
- π OGNet+:Stabilizing adversarially learned one-class novelty detection using pseudo anomalies, π°
TIP
ποΈ 2017
- π FRCN:Joint detection and recounting of abnormal events by learning deep generic knowledge, π°
ICCV
ποΈ 2022
- π Accurate-Interpretable-VAD:Attribute-based representations for accurate and interpretable video anomaly detection, π°
Arxiv
code
ποΈ 2023
-
π InterVAD:Towards interpretable video anomaly detection, π°
WACV
-
π EVAL:Eval: Explainable video anomaly localization, π°
CVPR
ποΈ 2024
- π AnomalyRuler:Follow the rules: Reasoning for video anomaly detection with large language models, π°
ECCV
code
ποΈ 2016
- π Conv-LSTM:Anomaly detection in video using predictive convolutional long short-term memory networks, π°
Arxiv
ποΈ 2017
-
π STAE: Spatio-temporal autoencoder for video anomaly detection, π°
ACM MM
-
π ConvLSTM-AE:Remembering history with convolutional LSTM for anomaly detection, π°
ICCV
code
ποΈ 2019
-
π DeepOC:A deep one-class neural network for anomalous event detection in complex scenes, π°
TNNLS
-
π sRNN-AE:Video anomaly detection with sparse coding inspired deep neural networks, π°
TPAMI
-
π MPED-RNN:Learning regularity in skeleton trajectories for anomaly detection in videos, π°
CVPR
ποΈ 2021
- π NormalGraph:Normal graph: Spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection, π°
Neurocomputing
ποΈ 2022
- π STGCAE-LSTM:Human-related anomalous event detection via spatial-temporal graph convolutional autoencoder with embedded long short-term memory network, π°
Neurocomputing
ποΈ 2023
- π USTN-DSC:Video event restoration based on keyframes for video anomaly detection, π°
CVPR
ποΈ 2024
- π AED-MAE:Self-distilled masked auto-encoders are efficient video anomaly detectors, π°
CVPR
code
ποΈ 2018
- π FuturePred:Future frame prediction for anomaly detectionβa new baseline, π°
CVPR
code - π ALOCC:Adversarially learned one-class classifier for novelty detection, π°
CVPR
code
ποΈ 2019
-
π AD-VAD:Training adversarial discriminators for cross-channel abnormal event detection in crowds, π°
WACV
-
π VAD-GAN:Robust anomaly detection in videos using multilevel representations, π°
AAAI
code -
π Ada-Net:Learning normal patterns via adversarial attention-based autoencoder for abnormal event detection in videos, π°
TMM
ποΈ 2020
- π OGNet:Old is gold: Redefining the adversarially learned one-class classifier training paradigm, π°
CVPR
code
ποΈ 2021
- π CT-D2GAN:Convolutional transformer based dual discriminator generative adversarial networks for video anomaly detection, π°
ACM MM
ποΈ 2023
-
π FPDM:Feature prediction diffusion model for video anomaly detection, π°
ICCV
-
π MoCoDAD:Multimodal motion conditioned diffusion model for skeleton-based video anomaly detection, π°
ICCV
code
ποΈ 2021
-
π LNRA:Learning not to reconstruct anomalies, π°
BMVC
code -
π BAF:A background-agnostic framework with adversarial training for abnormal event detection in video, π°
TPAMI
code
ποΈ 2022
-
π OGNet+:Stabilizing adversarially learned one-class novelty detection using pseudo anomalies, π°
TIP
-
π MBPA:Limiting reconstruction capability of autoencoders using moving backward pseudo anomalies, π°
UR
ποΈ 2023
-
π DSS-NET:Dss-net: Dynamic self-supervised network for video anomaly detection, π°
TMM
-
π PseudoBound:Pseudobound: Limiting the anomaly reconstruction capability of one-class classifiers using pseudo anomalies, π°
Neurocomputing
-
π PFMF:Generating anomalies for video anomaly detection with prompt-based feature mapping, π°
CVPR
ποΈ 2019
- π MemAE: Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection, π°
ICCV
code
ποΈ 2020
ποΈ 2021
ποΈ 2022
-
π EPAP-Net:Anomaly warning: Learning and memorizing future semantic patterns for unsupervised ex-ante potential anomaly prediction, π°
ACM MM
-
π CAFE:Effective video abnormal event detection by learning a consistency-aware high-level feature extractor, π°
ACM MM
-
π DLAN-AC:Dynamic local aggregation network with adaptive clusterer for anomaly detection, π°
ECCV
code
ποΈ 2023
-
π DMAD:Diversity-measurable anomaly detection, π°
CVPR
code -
π SVN:Stochastic video normality network for abnormal event detection in surveillance videos, π°
KBS
-
π LERF:Learning event-relevant factors for video anomaly detection, π°
AAAI
-
π MAAM-Net:Memory-augmented appearance-motion network for video anomaly detection, π°
PR
ποΈ 2024
- π STU-Net:Context recovery and knowledge retrieval: A novel two-stream framework for video anomaly detection, π°
TIP
homepage
ποΈ 2022
- π UPformer:Pixel-level anomaly detection via uncertainty-aware prototypical transformer, π°
ACM MM
ποΈ 2018
ποΈ 2018
ποΈ 2019
- π GCN:Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection, π°
CVPR
code
ποΈ 2020
-
π CLAWS: Claws: Clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection, π°
ECCV
code -
π HLNet:Not only look, but also listen: Learning multimodal violence detection under weak supervision, π°
ECCV
code homepage
ποΈ 2022
-
π S3R:Self-supervised sparse representation for video anomaly detection, π°
ECCV
code -
π GCN+:Weakly-supervised anomaly detection in video surveillance via graph convolutional label noise cleaning, π°
Neurocomputing
-
π MSL:Self-training multi-sequence learning with transformer for weakly supervised video anomaly detection, π°
AAAI
ποΈ 2023
-
π BN-WVAD:Batchnorm-based weakly supervised video anomaly detection, π°
Arxiv
code -
π LSTC:Long-short temporal co-teaching for weakly supervised video anomaly detection, π°
ICME
code
ποΈ 2024
-
π AlMarri Salem et al.: A multi-head approach with shuffled segments for weakly-supervised video anomaly detection, π°
WACV
-
π OVVAD:Open-vocabulary video anomaly detection, π°
CVPR
ποΈ 2019
- π GCN:Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection, π°
CVPR
code
ποΈ 2020
- π AR-NET:Weakly supervised video anomaly detection via center-guided discriminative learning, π°
ICME
code
ποΈ 2021
- π FVAL:Violence detection in videos based on fusing visual and audio information, π°
ICASSP
ποΈ 2023
- π HyperVD:Learning weakly supervised audio-visual violence detection in hyperbolic space, π°
Arxiv
code
ποΈ 2023
-
π PEL4VAD:Learning prompt-enhanced context features for weakly-supervised video anomaly detection, π°
Arxiv
code -
π TEVAD:Tevad: Improved video anomaly detection with captions, π°
CVPRW
code
ποΈ 2024
-
π LAP:Learn suspected anomalies from event prompts for video anomaly detection, π°
Arxiv
-
π ALAN:Toward video anomaly retrieval from video anomaly detection: New benchmarks and model, π°
TIP
ποΈ 2020
- π AR-NET:Weakly supervised video anomaly detection via center-guided discriminative learning, π°
ICME
code
ποΈ 2022
-
π ACF_MMVD:Look, listen and pay more attention: Fusing multi-modal information for video violence detection, π°
ICASSP
code -
π MSFA:Msaf: Multimodal supervise-attention enhanced fusion for video anomaly detection, π°
SPL
homepage -
π MACIL_SD:Modality-aware contrastive instance learning with self-distillation for weakly-supervised audio-visual violence detection, π°
ACM MM
code -
π HL-Net+:Weakly supervised audio-visual violence detection, π°
TMM
ποΈ 2024
- π UCA:Towards surveillance video-and-language understanding: New dataset baselines and challenges, π°
CVPR
homepage
ποΈ 2018
ποΈ 2019
-
π MAF:Motion-aware feature for improved video anomaly detection π°
BMVC
-
π TCN-IBL:Temporal convolutional network with complementary inner bag loss for weakly supervised anomaly detection, π°
ICIP
ποΈ 2020
- π HLNet:Not only look, but also listen: Learning multimodal violence detection under weak supervision, π°
ECCV
code
ποΈ 2022
- π CNL:Collaborative normality learning framework for weakly supervised video anomaly detection, π°
TCAS-II
ποΈ 2019
- π GCN:Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection, π°
CVPR
ποΈ 2021
- π MIST:Mist: Multiple instance self-training framework for video anomaly detection, π°
CVPR
code homepage
ποΈ 2022
- π MSL:Self-training multi-sequence learning with transformer for weakly supervised video anomaly detection, π°
AAAI
ποΈ 2023
- π CUPL:Exploiting completeness and uncertainty of pseudo labels for weakly supervised video anomaly detection, π°
CVPR
code
ποΈ 2024
- π TPWNG:Text prompt with normality guidance for weakly supervised video anomaly detection, π°
CVPR
ποΈ 2020
- π HLNet:Not only look, but also listen: Learning multimodal violence detection under weak supervision, π°
ECCV
code
ποΈ 2021
-
π CTR:Learning causal temporal relation and feature discrimination for anomaly detection, π°
TIP
-
π RTFM:Weakly-supervised video anomaly detection with robust temporal feature magnitude learning, π°
ICCV
code -
π CA-Net:Contrastive attention for video anomaly detection, π°
TMM
code -
π CRF:Dance with self-attention: A new look of conditional random fields on anomaly detection in videos, π°
ICCV
ποΈ 2022
-
π MSL:Self-training multi-sequence learning with transformer for weakly supervised video anomaly detection, π°
AAAI
-
π DAR:Decouple and resolve: transformer-based models for online anomaly detection from weakly labeled videos, π°
TIFS
-
π WAGCN:Adaptive graph convolutional networks for weakly supervised anomaly detection in videos, π°
SPL
-
π SGTDT:Weakly supervised video anomaly detection via self-guided temporal discriminative transformer, π°
TCYB
-
π MLAD:Weakly supervised anomaly detection in videos considering the openness of events, π°
TITS
ποΈ 2023
-
π CMRL: Look around for anomalies: weakly-supervised anomaly detection via context-motion relational learning, π°
CVPR
-
π CBCG:Weakly supervised video anomaly detection based on cross-batch clustering guidance, π°
ICME
-
π DMU:Dual memory units with uncertainty regulation for weakly supervised video anomaly detection, π°
AAAI
code
ποΈ 2022
-
π STA-Net:Learning task-specific representation for video anomaly detection with spatialtemporal attention, π°
ICASSP
-
π SSRL:Scale-aware spatio-temporal relation learning for video anomaly detection, π°
ECCV
ποΈ 2023
- π LSTC:Long-short temporal co-teaching for weakly supervised video anomaly detection, π°
ICME
code
ποΈ 2024
- π MSIP: Learning spatio-temporal relations with multi-scale integrated perception for video anomaly detection, π°
ICASSP
ποΈ 2019
- π Social-MIL:Social mil: Interaction-aware for crowd anomaly detection, π°
AVSS
ποΈ 2022
-
π MCR:Multiscale continuity-aware refinement network for weakly supervised video anomaly detection, π°
ICME
-
π BN-SVP:Bayesian nonparametric submodular video partition for robust anomaly detection, π°
CVPR
code
ποΈ 2023
-
π NGMIL:Normality guided multiple instance learning for weakly supervised video anomaly detection, π°
WACV
-
π UMIL:Unbiased multiple instance learning for weakly supervised video anomaly detection, π°
CVPR
code -
π MGFN:Mgfn: Magnitude-contrastive glance-and-focus network for weakly-supervised video anomaly detection, π°
AAAI
code
ποΈ 2024
-
π LAP:Learn suspected anomalies from event prompts for video anomaly detection, π°
Arxiv
-
π PE-MIL: Prompt-enhanced multiple instance learning for weakly supervised video anomaly detection, π°
CVPR
ποΈ 2019
- π TCN-IBL:Temporal convolutional network with complementary inner bag loss for weakly supervised anomaly detection, π°
ICIP
ποΈ 2021
- π CTR:Learning causal temporal relation and feature discrimination for anomaly detection, π°
TIP
ποΈ 2022
- π SGTDT:Weakly supervised video anomaly detection via self-guided temporal discriminative transformer, π°
TCYB
ποΈ 2023
-
π BN-WVAD:Batchnorm-based weakly supervised video anomaly detection, π°
Arxiv
code -
π PEL4VAD:Learning prompt-enhanced context features for weakly-supervised video anomaly detection, π°
Arxiv
code -
π TeD-SPAD:Ted-spad: Temporal distinctiveness for self-supervised privacy-preservation for video anomaly detection, π°
ICCV
code -
π CLAWS+:Clustering aided weakly supervised training to detect anomalous events in surveillance videos, π°
TNNLS
ποΈ 2024
- π LAP:Learn suspected anomalies from event prompts for video anomaly detection, π°
Arxiv
ποΈ 2022
- π MACIL-SD:Modality-aware contrastive instance learning with self-distillation for weakly-supervised audio-visual violence detection, π°
ACM MM
code
ποΈ 2023
- π DPK:Distilling privileged knowledge for anomalous event detection from weakly labeled videos, π°
TNNLS
ποΈ 2023
-
π TEVAD:Tevad: Improved video anomaly detection with captions, π°
CVPRW
-
π CLIP-TSA:Clip-tsa: Clip-assisted temporal self-attention for weakly-supervised video anomaly detection, π°
ICIP
code
ποΈ 2024
-
π UCA:Towards surveillance video-and-language understanding: New dataset baselines and challenges, π°
CVPR
homepage -
π VadCLIP:Vadclip: Adapting vision-language models for weakly supervised video anomaly detection, π°
AAAI
code -
π Holmes-VAD:Holmes-vad: Towards unbiased and explainable video anomaly detection via multi-modal llm, π°
Arxiv
code homepage -
π VADor w LSTC:Video anomaly detection and explanation via large language models, π°
Arxiv
-
π LAVAD: Harnessing large language models for training-free video anomaly detection, π°
CVPR
code homepage -
π STPrompt:Weakly supervised video anomaly detection and localization with spatio-temporal prompts, π°
ACM MM
ποΈ 2019
- π Background-bias:Exploring background-bias for anomaly detection in surveillance videos, π°
ACM MM
code
ποΈ 2021
- π WSSTAD:Weakly-supervised spatio-temporal anomaly detection in surveillance video, π°
IJCAI
ποΈ 2016
- π TS-LSTM:Multi-stream deep networks for person to person violence detection in videos, π°
CCPR
ποΈ 2017
- π FightNet:Violent interaction detection in video based on deep learning, π°
JPCS
ποΈ 2019
-
π Sub-Vio:Toward subjective violence detection in videos, π°
ICASSP
-
π CCTV-Fights:Detection of real-world fights in surveillance videos, π°
ICASSP
homepage
ποΈ 2016
- π TS-LSTM:Multi-stream deep networks for person to person violence detection in videos, π°
CCPR
ποΈ 2017
- π ConvLSTM:Learning to detect violent videos using convolutional long short-term memory, π°
AVSS
code
ποΈ 2018
- π BiConvLSTM:Bidirectional convolutional lstm for the detection of violence in videos, π°
ECCVW
ποΈ 2020
- π MM-VD:Multimodal violence detection in videos, π°
ICASSP
ποΈ 2018
-
π DSS:Eye in the sky: Real-time drone surveillance system for violent individuals identification using scatternet hybrid deep learning network, π°
CVPRW
ποΈ 2020
-
π SPIL:Human interaction learning on 3d skeleton point clouds for video violence recognition, π°
ECCV
ποΈ 2020
- π MM-VD:Multimodal violence detection in videos, π°
ICASSP
ποΈ 2021
- π FlowGatedNet:Rwf-2000: an open large scale video database for violence detection, π°
ICPR
code
ποΈ 2022
- π MutualDis:Multimodal violent video recognition based on mutual distillation, π°
PRCV
ποΈ 2023
- π HSCD: Human skeletons and change detection for efficient violence detection in surveillance videos, π°
CVIU
code
ποΈ 2018
- π DAW:Detecting abnormality without knowing normality: A two-stage approach for unsupervised video abnormal event detection, π°
ACM MM
ποΈ 2020
- π STDOR:Self-trained deep ordinal regression for end-to-end video anomaly detection, π°
CVPR
ποΈ 2022
- π GCL:Generative cooperative learning for unsupervised video anomaly detection, π°
CVPR
ποΈ 2024
- π C2FPL:A coarse-to-fine pseudo-labeling (c2fpl) framework for unsupervised video anomaly detection, π°
WACV
code
ποΈ 2016
ποΈ 2017
- π Unmasking:Unmasking the abnormal events in video, π°
ICCV
ποΈ 2018
ποΈ 2022
- π TMAE:Detecting anomalous events from unlabeled videos via temporal masked autoencoding, π°
ICME
ποΈ 2021
- π DUAD:Deep unsupervised anomaly detection, π°
WACV
ποΈ 2022
-
π CIL:A causal inference look at unsupervised video anomaly detection, π°
AAAI
-
π LBR-SPR:Deep anomaly discovery from unlabeled videos via normality advantage and self-paced refinement, π°
CVPR
code
ποΈ 2019
- π MLEP:Margin learning embedded prediction for video anomaly detection with a few anomalies, π°
IJCAI
code
ποΈ 2022
-
π UBnormal:Ubnormal: New benchmark for supervised open-set video anomaly detection, π°
CVPR
code -
π OSVAD:Towards open set video anomaly detection, π°
ECCV
ποΈ 2024
- π OVVAD:Open-vocabulary video anomaly detection, π°
CVPR
ποΈ 2020
ποΈ 2021
- π AADNet:Adaptive anomaly detection network for unseen scene without fine-tuning, π°
PRCV
ποΈ 2022
- π VADNet:Boosting variational inference with margin learning for few-shot scene-adaptive anomaly detection, π°
TCSVT
code
ποΈ 2023
- π zxVAD:Cross-domain video anomaly detection without target domain adaptation, π°
WACV
The following tables are the performance comparison of semi-supervised VAD, weakly supervised VAD, fully supervised VAD, and unsupervised VAD methods as reported in the literature. For semi-supervised, weakly supervised, and unsupervised VAD methods, the evaluation metric used is AUC (%) and AP ( XD-Violence, %), while for fully supervised VAD methods, the metric is Accuracy (%).
- Quantitative Performance Comparison of Semi-supervised Methods on Public Datasets.
Method | Publication | Methodology | Ped1 | Ped2 | Avenue | ShanghaiTech | UBnormal |
---|---|---|---|---|---|---|---|
AMDN | BMVC 2015 | One-class classifier | 92.1 | 90.8 | - | - | - |
ConvAE | CVPR 2016 | Reconstruction | 81.0 | 90.0 | 72.0 | - | - |
STAE | ACMMM 2017 | Hybrid | 92.3 | 91.2 | 80.9 | - | - |
StackRNN | ICCV 2017 | Sparse coding | - | 92.2 | 81.7 | 68.0 | - |
FuturePred | CVPR 2018 | Prediction | 83.1 | 95.4 | 85.1 | 72.8 | - |
DeepOC | TNNLS 2019 | One-class classifier | 83.5 | 96.9 | 86.6 | - | - |
MemAE | ICCV 2019 | Reconstruction | - | 94.1 | 83.3 | 71.2 | - |
AnoPCN | ACMMM 2019 | Prediction | - | 96.8 | 86.2 | 73.6 | - |
ObjectAE | CVPR 2019 | One-class classifier | - | 97.8 | 90.4 | 84.9 | - |
BMAN | TIP 2019 | Prediction | - | 96.6 | 90.0 | 76.2 | - |
sRNN-AE | TPAMI 2019 | Sparse coding | - | 92.2 | 83.5 | 69.6 | - |
ClusterAE | ECCV 2020 | Reconstruction | - | 96.5 | 86.0 | 73.3 | - |
MNAD | CVPR 2020 | Reconstruction | - | 97.0 | 88.5 | 70.5 | - |
VEC | ACMMM 2020 | Cloze test | - | 97.3 | 90.2 | 74.8 | - |
AMMC-Net | AAAI 2021 | Prediction | - | 96.6 | 86.6 | 73.7 | - |
MPN | CVPR 2021 | Prediction | 85.1 | 96.9 | 89.5 | 73.8 | - |
HF$^2$-VAD | ICCV 2021 | Hybrid | - | 99.3 | 91.1 | 76.2 | - |
BAF | TPAMI 2021 | One-class classifier | 98.7 | 92.3 | 82.7 | 59.3 | |
Multitask | CVPR 2021 | Multiple tasks | - | 99.8 | 92.8 | 90.2 | - |
F$^2$PN | TPAMI 2022 | Prediction | 84.3 | 96.2 | 85.7 | 73.0 | - |
DLAN-AC | ECCV 2022 | Reconstruction | - | 97.6 | 89.9 | 74.7 | - |
BDPN | AAAI 2022 | Prediction | - | 98.3 | 90.3 | 78.1 | - |
CAFΓ | ACMMM 2022 | Prediction | - | 98.4 | 92.6 | 77.0 | - |
STJP | ECCV 2022 | Jigsaw puzzle | - | 99.0 | 92.2 | 84.3 | 56.4 |
MPT | ICCV 2023 | Multiple tasks | - | 97.6 | 90.9 | 78.8 | - |
HSC | CVPR 2023 | Hybrid | - | 98.1 | 93.7 | 83.4 | - |
LERF | AAAI 2023 | Predicition | - | 99.4 | 91.5 | 78.6 | - |
DMAD | CVPR 2023 | Reconstruction | - | 99.7 | 92.8 | 78.8 | - |
EVAL | CVPR 2023 | Interpretable learning | - | - | 86.0 | 76.6 | - |
FBSC-AE | CVPR 2023 | Prediction | - | - | 86.8 | 79.2 | - |
FPDM | ICCV 2023 | Prediction | - | - | 90.1 | 78.6 | 62.7 |
PFMF | CVPR 2023 | Multiple tasks | - | - | 93.6 | 85.0 | - |
STG-NF | ICCV 2023 | Gaussian classifier | - | - | - | 85.9 | 71.8 |
AED-MAE | CVPR 2024 | Patch inpainting | - | 95.4 | 91.3 | 79.1 | 58.5 |
SSMCTB | TPAMI 2024 | Patch inpainting | - | - | 91.6 | 83.7 | - |
-
Quantitative Performance Comparison of Weakly Supervised Methods on Public Datasets.
Method Publication Feature UCF-Crime XD-Violence ShanghaiTech TAD DeepMIL CVPR 2018 C3D(RGB) 75.40 - - - GCN CVPR 2019 TSN(RGB) 82.12 - 84.44 - HLNet ECCV 2020 I3D(RGB) 82.44 75.41 - - CLAWS ECCV 2020 C3D(RGB) 83.03 - 89.67 - MIST CVPR 2021 I3D(RGB) 82.30 - 94.83 - RTFM ICCV 2021 I3D(RGB) 84.30 77.81 97.21 - CTR TIP 2021 I3D(RGB) 84.89 75.90 97.48 - MSL AAAI 2022 VideoSwin(RGB) 85.62 78.59 97.32 - S3R ECCV 2022 I3D(RGB) 85.99 80.26 97.48 - SSRL ECCV 2022 I3D(RGB) 87.43 - 97.98 - CMRL CVPR 2023 I3D(RGB) 86.10 81.30 97.60 - CUPL CVPR 2023 I3D(RGB) 86.22 81.43 - 91.66 MGFN AAAI 2023 VideoSwin(RGB) 86.67 80.11 - - UMIL CVPR 2023 CLIP 86.75 - - 92.93 DMU AAAI 2023 I3D(RGB) 86.97 81.66 - - PE-MIL CVPR 2024 I3D(RGB) 86.83 88.05 98.35 - TPWNG CVPR 2024 CLIP 87.79 83.68 - - VadCLIP AAAI 2024 CLIP 88.02 84.51 - - STPrompt ACMMM 2024 CLIP 88.08 - 97.81 - -
Quantitative Performance Comparison of Fully Supervised Methods on Public Datasets.
Method Publication Model Input Hockey Fights Violent-Flows RWF-2000 Crowed Violence TS-LSTM PR 2016 RGB+Flow 93.9 - - - FightNet JPCS 2017 RGB+Flow 97.0 - - - ConvLSTM AVSS 2017 Frame Difference 97.1 94.6 - - BiConvLSTM ECCVW 2018 Frame Difference 98.1 96.3 - - SPIL ECCV 2020 Skeleton 96.8 - 89.3 94.5 FlowGatedNet ICPR 2020 RGB+Flow 98.0 - 87.3 88.9 X3D AVSS 2022 RGB - 98.0 94.0 - HSCD CVIU 2023 Skeleton+Frame Difference 94.5 - 90.3 94.3 -
Quantitative Performance Comparison of Unsupervised Methods on Public Datasets.
Method Publication Methodology Avenue Subway Exit Ped1 Ped2 ShaihaiTech UMN ADF ECCV 2016 Change detection 78.3 82.4 - - - 91.0 Unmasking ICCV 2017 Change detection 80.6 86.3 68.4 82.2 - 95.1 MC2ST BMVC 2018 Change detection 84.4 93.1 71.8 87.5 - - DAW ACMMM 2018 Pseudo label 85.3 84.5 77.8 96.4 - - STDOR CVPR 2020 Pseudo label - 92.7 71.7 83.2 - 97.4 TMAE ICME 2022 Change detection 89.8 - 75.7 94.1 71.4 - CIL AAAI 2022 Others 90.3 97.6 84.9 99.4 - 100 LBR-SPR CVPR 2022 Others 92.8 - 81.1 97.2 72.6 -
If you find our work useful, please cite our paper:
@article{wu2024deep,
title={Deep Learning for Video Anomaly Detection: A Review},
author={Wu, Peng and Pan, Chengyu and Yan, Yuting and Pang, Guansong and Wang, Peng and Zhang, Yanning},
journal={arXiv preprint arXiv:xxxxx},
year={2024}
}