Skip to content

Code for the paper entitled "Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw Puzzles" (ECCV 2022)

License

Notifications You must be signed in to change notification settings

gdwang08/Jigsaw-VAD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Jigsaw-VAD

Official pytorch implementation for the paper entitled "Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw Puzzles" (ECCV 2022)

plot

Environments

  • python 3.7.10
  • pytorch 1.7.1
  • torchvision 0.8.2
  • scipy 1.7.1
  • opencv-python 4.5.4.58
  • pillow 8.2.0

Data Preparation

Please make sure that you have sufficient storage.

python gen_patches.py --dataset shanghaitech --phase test --filter_ratio 0.8 --sample_num 9
Dataset # Patch (train) # Patch (test) filter ratio sample num storage
Ped2 27660 31925 0.5 7 20G
Avenue 96000 79988 0.8 7 58G
Shanghaitech 145766 130361 0.8 9 119G

Training

python main.py --dataset shanghaitech --val_step 100 --print_interval 20 --batch_size 192 --sample_num 9 --epochs 100 --static_threshold 0.2

Testing

python main.py --dataset shanghaitech/avenue/ped --sample_num 9/7/7 --checkpoint xxx.pth

We provide the pre-trained weights for STC, Avenue and Ped2.

Citation

@inproceedings{wang2022jigsaw-vad,
  title     = {Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw Puzzles},
  author    = {Guodong Wang and Yunhong Wang and Jie Qin and Dongming Zhang and Xiuguo Bao and Di Huang},
  booktitle = {European Conference on Computer Vision (ECCV)},
  year      = {2022}
}

About

Code for the paper entitled "Video Anomaly Detection by Solving Decoupled Spatio-Temporal Jigsaw Puzzles" (ECCV 2022)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages