Objective: Transform Landsat 8 spectral bands to their corresponding Sentinel-2 bands and predict the three Sentinel-2 Red Edge bands not available in Landsat 8. Additionally, increase the availability of Sentinel-2 scenes potentially by 30% by fusing the dataset with Landsat 8.
Issue: Data availability can be an issue due to the relatively lower temporal resolution and cloud cover.
Previous Work and Limitations: Previous work on fusing Landsat 8 and Sentinel-2 only works with the common spectral bands between L8 and S2 and does not provide a solution to predict the additional Sentinel-2 spectral bands such as Red Edge 1, 2, and 3 which help in the extraction of certain phenological properties.
Possible Solution: Generative Adversarial Networks are known to learn the data distribution of the target dataset (Sentinel-2) in a supervised manner and transform the samples from the input dataset (Landsat 8) to replicate the corresponding sample from the target dataset (Sentinel-2). We will train a GAN to learn the data distribution of the Red Edge bands from the Landsat 8 bands informationally closest to the Sentinel-2 Red Edge bands (Green for Red Edge 1 and NIR for Red Edge 2 and 3).
L2SGAN or Landsat 8 to Sentinel-2 Generative Adversarial Network will be compared with a deep residual encoder decoder architecture DREDN to highlight the pros and cons of using a GAN over other previously used architectures for satellite image tasks.
Results:
Landsat 8 Green to Sentinel-2 Green
A: Landsat 8 Green, B: Sentinel-2 like Green by GAN, C: Sentinel-2 like Green by DREDN, D: Original Sentinel-2 Green
Landsat 8 NIR to Sentinel-2 Red Edge 1
A: Landsat 8 NIR, B: Sentinel2 like NIR by GAN, C: Sentinel2 like NIR by DREDN, D: Original Sentinel-2 NIR
S2 G | ERGAS | SAM | SCC | PSNR | RMSE | UQI |
---|---|---|---|---|---|---|
L8 G | 2330.51 | 0.2376 | 0.0632 | 22.86 | 21.05 | 0.9351 |
DREDN | 1931.55 | 0.2034 | 0.1898 | 24.95 | 16.99 | 0.9525 |
GAN | 1870.25 | 0.2052 | 0.1829 | 24.86 | 17.15 | 0.9526 |
S2 RE1 | ERGAS | SAM | SCC | PSNR | RMSE | UQI |
---|---|---|---|---|---|---|
L8 G | 3597.13 | 0.2211 | 0.0631 | 20.98 | 24.71 | 0.8650 |
DREDN | 1712.56 | 0.1725 | 0.1580 | 23.60 | 18.60 | 0.9393 |
GAN | 1660.75 | 0.1677 | 0.1582 | 24.07 | 17.35 | 0.9484 |
S2 NIR | ERGAS | SAM | SCC | PSNR | RMSE | UQI |
---|---|---|---|---|---|---|
L8 NIR | 918.57 | 0.1279 | 0.2588 | 24.39 | 16.40 | 0.9809 |
DREDN | 780.14 | 0.1106 | 0.3970 | 26.05 | 13.47 | 0.9869 |
GAN | 848.66 | 0.1227 | 0.3238 | 25.37 | 14.88 | 0.9853 |
S2 RE2 | ERGAS | SAM | SCC | PSNR | RMSE | UQI |
---|---|---|---|---|---|---|
L8 NIR | 1399.44 | 0.1865 | 0.2276 | 20.74 | 25.53 | 0.9480 |
DREDN | 1148.09 | 0.1670 | 0.3454 | 23.27 | 19.10 | 0.9678 |
GAN | 1176.92 | 0.1751 | 0.3034 | 22.98 | 19.84 | 0.9670 |
S2 RE3 | ERGAS | SAM | SCC | PSNR | RMSE | UQI |
---|---|---|---|---|---|---|
L8 NIR | 1096.80 | 0.1426 | 0.2480 | 22.58 | 19.94 | 0.9716 |
DREDN | 869.04 | 0.1228 | 0.3850 | 25.25 | 14.79 | 0.9838 |
GAN | 1081.82 | 0.1454 | 0.2946 | 23.40 | 18.12 | 0.9760 |