Skip to content

Rohit18/Landsat8-Sentinel2-Fusion

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Landsat8-Sentinel2-Fusion

Objective: Transform Landsat 8 spectral bands to their corresponding Sentinel-2 bands and predict the three Sentinel-2 Red Edge bands not available in Landsat 8. Additionally, increase the availability of Sentinel-2 scenes potentially by 30% by fusing the dataset with Landsat 8.

Issue: Data availability can be an issue due to the relatively lower temporal resolution and cloud cover.

Previous Work and Limitations: Previous work on fusing Landsat 8 and Sentinel-2 only works with the common spectral bands between L8 and S2 and does not provide a solution to predict the additional Sentinel-2 spectral bands such as Red Edge 1, 2, and 3 which help in the extraction of certain phenological properties.

Possible Solution: Generative Adversarial Networks are known to learn the data distribution of the target dataset (Sentinel-2) in a supervised manner and transform the samples from the input dataset (Landsat 8) to replicate the corresponding sample from the target dataset (Sentinel-2). We will train a GAN to learn the data distribution of the Red Edge bands from the Landsat 8 bands informationally closest to the Sentinel-2 Red Edge bands (Green for Red Edge 1 and NIR for Red Edge 2 and 3).

L2SGAN or Landsat 8 to Sentinel-2 Generative Adversarial Network will be compared with a deep residual encoder decoder architecture DREDN to highlight the pros and cons of using a GAN over other previously used architectures for satellite image tasks.

Landsat8-Sentinel2-Fusion%2065454290927549219c061f53212d6fd8/Methodology.png

Results:

Landsat 8 Green to Sentinel-2 Green

A: Landsat 8 Green, B: Sentinel-2 like Green by GAN, C: Sentinel-2 like Green by DREDN, D: Original Sentinel-2 Green

Landsat8-Sentinel2-Fusion%2065454290927549219c061f53212d6fd8/Result.png

Landsat 8 NIR to Sentinel-2 Red Edge 1

A: Landsat 8 NIR, B: Sentinel2 like NIR by GAN, C: Sentinel2 like NIR by DREDN, D: Original Sentinel-2 NIR

Landsat8-Sentinel2-Fusion%2065454290927549219c061f53212d6fd8/Result2.png

S2 G ERGAS SAM SCC PSNR RMSE UQI
L8 G 2330.51 0.2376 0.0632 22.86 21.05 0.9351
DREDN 1931.55 0.2034 0.1898 24.95 16.99 0.9525
GAN 1870.25 0.2052 0.1829 24.86 17.15 0.9526
S2 RE1 ERGAS SAM SCC PSNR RMSE UQI
L8 G 3597.13 0.2211 0.0631 20.98 24.71 0.8650
DREDN 1712.56 0.1725 0.1580 23.60 18.60 0.9393
GAN 1660.75 0.1677 0.1582 24.07 17.35 0.9484
S2 NIR ERGAS SAM SCC PSNR RMSE UQI
L8 NIR 918.57 0.1279 0.2588 24.39 16.40 0.9809
DREDN 780.14 0.1106 0.3970 26.05 13.47 0.9869
GAN 848.66 0.1227 0.3238 25.37 14.88 0.9853
S2 RE2 ERGAS SAM SCC PSNR RMSE UQI
L8 NIR 1399.44 0.1865 0.2276 20.74 25.53 0.9480
DREDN 1148.09 0.1670 0.3454 23.27 19.10 0.9678
GAN 1176.92 0.1751 0.3034 22.98 19.84 0.9670
S2 RE3 ERGAS SAM SCC PSNR RMSE UQI
L8 NIR 1096.80 0.1426 0.2480 22.58 19.94 0.9716
DREDN 869.04 0.1228 0.3850 25.25 14.79 0.9838
GAN 1081.82 0.1454 0.2946 23.40 18.12 0.9760

About

Translating Landsat 8 to Sentinel-2 using a GAN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages