Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add asyncio support for all components #191

Merged
merged 2 commits into from
Feb 19, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 48 additions & 3 deletions alpha_vantage/alphavantage.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from functools import wraps
import inspect
import sys
import re
# Pandas became an optional dependency, but we still want to track it
try:
import pandas
Expand Down Expand Up @@ -38,9 +39,9 @@ def __init__(self, key=None, output_format='json',
by the alpha vantage api call or 'integer' if you just want an
integer indexing on your dataframe. Only valid, when the
output_format is 'pandas'
proxy: Dictionary mapping protocol or protocol and hostname to
proxy: Dictionary mapping protocol or protocol and hostname to
the URL of the proxy.
rapidapi: Boolean describing whether or not the API key is
rapidapi: Boolean describing whether or not the API key is
through the RapidAPI platform or not
"""
if key is None:
Expand Down Expand Up @@ -159,6 +160,50 @@ def _call_wrapper(self, *args, **kwargs):
return self._handle_api_call(url), data_key, meta_data_key
return _call_wrapper

@classmethod
def _output_format_sector(cls, func, override=None):
""" Decorator in charge of giving the output its right format, either
json or pandas (replacing the % for usable floats, range 0-1.0)
Keyword Arguments:
func: The function to be decorated
override: Override the internal format of the call, default None
Returns:
A decorator for the format sector api call
"""
@wraps(func)
def _format_wrapper(self, *args, **kwargs):
json_response, data_key, meta_data_key = func(
self, *args, **kwargs)
if isinstance(data_key, list):
# Replace the strings into percentage
data = {key: {k: self.percentage_to_float(v)
for k, v in json_response[key].items()} for key in data_key}
else:
data = json_response[data_key]
# TODO: Fix orientation in a better way
meta_data = json_response[meta_data_key]
# Allow to override the output parameter in the call
if override is None:
output_format = self.output_format.lower()
elif 'json' or 'pandas' in override.lower():
output_format = override.lower()
# Choose output format
if output_format == 'json':
return data, meta_data
elif output_format == 'pandas':
data_pandas = pandas.DataFrame.from_dict(data,
orient='columns')
# Rename columns to have a nicer name
col_names = [re.sub(r'\d+.', '', name).strip(' ')
for name in list(data_pandas)]
data_pandas.columns = col_names
return data_pandas, meta_data
else:
raise ValueError('Format: {} is not supported'.format(
self.output_format))
return _format_wrapper

@classmethod
def _output_format(cls, func, override=None):
""" Decorator in charge of giving the output its right format, either
Expand Down Expand Up @@ -237,7 +282,7 @@ def set_proxy(self, proxy=None):
""" Set a new proxy configuration
Keyword Arguments:
proxy: Dictionary mapping protocol or protocol and hostname to
proxy: Dictionary mapping protocol or protocol and hostname to
the URL of the proxy.
"""
self.proxy = proxy or {}
Expand Down
Empty file.
272 changes: 272 additions & 0 deletions alpha_vantage/async_support/alphavantage.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,272 @@
import aiohttp
from functools import wraps
import inspect
import re
# Pandas became an optional dependency, but we still want to track it
try:
import pandas
_PANDAS_FOUND = True
except ImportError:
_PANDAS_FOUND = False
import csv
from ..alphavantage import AlphaVantage as AlphaVantageBase


class AlphaVantage(AlphaVantageBase):
"""
Async version of the base class where the decorators and base function for
the other classes of this python wrapper will inherit from.
"""

def __init__(self, *args, proxy=None, **kwargs):
super(AlphaVantage, self).__init__(*args, **kwargs)
self.session = None
self.proxy = proxy or ''

@classmethod
def _call_api_on_func(cls, func):
""" Decorator for forming the api call with the arguments of the
function, it works by taking the arguments given to the function
and building the url to call the api on it

Keyword Arguments:
func: The function to be decorated
"""

# Argument Handling
argspec = inspect.getfullargspec(func)
try:
# Asumme most of the cases have a mixed between args and named
# args
positional_count = len(argspec.args) - len(argspec.defaults)
defaults = dict(
zip(argspec.args[positional_count:], argspec.defaults))
except TypeError:
if argspec.args:
# No defaults
positional_count = len(argspec.args)
defaults = {}
elif argspec.defaults:
# Only defaults
positional_count = 0
defaults = argspec.defaults
# Actual decorating

@wraps(func)
async def _call_wrapper(self, *args, **kwargs):
used_kwargs = kwargs.copy()
# Get the used positional arguments given to the function
used_kwargs.update(zip(argspec.args[positional_count:],
args[positional_count:]))
# Update the dictionary to include the default parameters from the
# function
used_kwargs.update({k: used_kwargs.get(k, d)
for k, d in defaults.items()})
# Form the base url, the original function called must return
# the function name defined in the alpha vantage api and the data
# key for it and for its meta data.
function_name, data_key, meta_data_key = func(
self, *args, **kwargs)
base_url = AlphaVantage._RAPIDAPI_URL if self.rapidapi else AlphaVantage._ALPHA_VANTAGE_API_URL
url = "{}function={}".format(base_url, function_name)
for idx, arg_name in enumerate(argspec.args[1:]):
try:
arg_value = args[idx]
except IndexError:
arg_value = used_kwargs[arg_name]
if 'matype' in arg_name and arg_value:
# If the argument name has matype, we gotta map the string
# or the integer
arg_value = self.map_to_matype(arg_value)
if arg_value:
# Discard argument in the url formation if it was set to
# None (in other words, this will call the api with its
# internal defined parameter)
if isinstance(arg_value, tuple) or isinstance(arg_value, list):
# If the argument is given as list, then we have to
# format it, you gotta format it nicely
arg_value = ','.join(arg_value)
url = '{}&{}={}'.format(url, arg_name, arg_value)
# Allow the output format to be json or csv (supported by
# alphavantage api). Pandas is simply json converted.
if 'json' in self.output_format.lower() or 'csv' in self.output_format.lower():
oformat = self.output_format.lower()
elif 'pandas' in self.output_format.lower():
oformat = 'json'
else:
raise ValueError("Output format: {} not recognized, only json,"
"pandas and csv are supported".format(
self.output_format.lower()))
apikey_parameter = "" if self.rapidapi else "&apikey={}".format(
self.key)
if self._append_type:
url = '{}{}&datatype={}'.format(url, apikey_parameter, oformat)
else:
url = '{}{}'.format(url, apikey_parameter)
return await self._handle_api_call(url), data_key, meta_data_key
return _call_wrapper

@classmethod
def _output_format_sector(cls, func, override=None):
""" Decorator in charge of giving the output its right format, either
json or pandas (replacing the % for usable floats, range 0-1.0)

Keyword Arguments:
func: The function to be decorated
override: Override the internal format of the call, default None
Returns:
A decorator for the format sector api call
"""
@wraps(func)
async def _format_wrapper(self, *args, **kwargs):
json_response, data_key, meta_data_key = await func(
self, *args, **kwargs)
if isinstance(data_key, list):
# Replace the strings into percentage
data = {key: {k: self.percentage_to_float(v)
for k, v in json_response[key].items()} for key in data_key}
else:
data = json_response[data_key]
# TODO: Fix orientation in a better way
meta_data = json_response[meta_data_key]
# Allow to override the output parameter in the call
if override is None:
output_format = self.output_format.lower()
elif 'json' or 'pandas' in override.lower():
output_format = override.lower()
# Choose output format
if output_format == 'json':
return data, meta_data
elif output_format == 'pandas':
data_pandas = pandas.DataFrame.from_dict(data,
orient='columns')
# Rename columns to have a nicer name
col_names = [re.sub(r'\d+.', '', name).strip(' ')
for name in list(data_pandas)]
data_pandas.columns = col_names
return data_pandas, meta_data
else:
raise ValueError('Format: {} is not supported'.format(
self.output_format))
return _format_wrapper

@classmethod
def _output_format(cls, func, override=None):
""" Decorator in charge of giving the output its right format, either
json or pandas

Keyword Arguments:
func: The function to be decorated
override: Override the internal format of the call, default None
"""
@wraps(func)
async def _format_wrapper(self, *args, **kwargs):
call_response, data_key, meta_data_key = await func(
self, *args, **kwargs)
if 'json' in self.output_format.lower() or 'pandas' \
in self.output_format.lower():
data = call_response[data_key]

if meta_data_key is not None:
meta_data = call_response[meta_data_key]
else:
meta_data = None
# Allow to override the output parameter in the call
if override is None:
output_format = self.output_format.lower()
elif 'json' or 'pandas' in override.lower():
output_format = override.lower()
# Choose output format
if output_format == 'json':
return data, meta_data
elif output_format == 'pandas':
if isinstance(data, list):
# If the call returns a list, then we will append them
# in the resulting data frame. If in the future
# alphavantage decides to do more with returning arrays
# this might become buggy. For now will do the trick.
data_array = []
for val in data:
data_array.append([v for _, v in val.items()])
data_pandas = pandas.DataFrame(data_array, columns=[
k for k, _ in data[0].items()])
else:
try:
data_pandas = pandas.DataFrame.from_dict(data,
orient='index',
dtype='float')
# This is for Global quotes or any other new Alpha Vantage
# data that is added.
# It will have to be updated so that we can get exactly
# The dataframes we want moving forward
except ValueError:
data = {data_key: data}
data_pandas = pandas.DataFrame.from_dict(data,
orient='index',
dtype='object')
return data_pandas, meta_data

if 'integer' in self.indexing_type:
# Set Date as an actual column so a new numerical index
# will be created, but only when specified by the user.
data_pandas.reset_index(level=0, inplace=True)
data_pandas.index.name = 'index'
else:
data_pandas.index.name = 'date'
# convert to pandas._libs.tslibs.timestamps.Timestamp
data_pandas.index = pandas.to_datetime(
data_pandas.index)
return data_pandas, meta_data
elif 'csv' in self.output_format.lower():
return call_response, None
else:
raise ValueError('Format: {} is not supported'.format(
self.output_format))
return _format_wrapper

def set_proxy(self, proxy=None):
"""
Set a new proxy configuration

Keyword Arguments:
proxy: String URL of the proxy.
"""
self.proxy = proxy or ''

async def _handle_api_call(self, url):
"""
Handle the return call from the api and return a data and meta_data
object. It raises a ValueError on problems

Keyword Arguments:
url: The url of the service
"""
if not self.session:
self.session = aiohttp.ClientSession()
response = await self.session.get(url, proxy=self.proxy, headers=self.headers)
if 'json' in self.output_format.lower() or 'pandas' in \
self.output_format.lower():
json_response = await response.json()
if not json_response:
raise ValueError(
'Error getting data from the api, no return was given.')
elif "Error Message" in json_response:
raise ValueError(json_response["Error Message"])
elif "Information" in json_response and self.treat_info_as_error:
raise ValueError(json_response["Information"])
elif "Note" in json_response and self.treat_info_as_error:
raise ValueError(json_response["Note"])
return json_response
else:
csv_response = csv.reader(response.text.splitlines())
if not csv_response:
raise ValueError(
'Error getting data from the api, no return was given.')
return csv_response

async def close(self):
"""
Close the underlying aiohttp session
"""
if self.session and not self.session.closed:
await self.session.close()
1 change: 1 addition & 0 deletions alpha_vantage/async_support/cryptocurrencies.py
1 change: 1 addition & 0 deletions alpha_vantage/async_support/foreignexchange.py
1 change: 1 addition & 0 deletions alpha_vantage/async_support/sectorperformance.py
1 change: 1 addition & 0 deletions alpha_vantage/async_support/techindicators.py
1 change: 1 addition & 0 deletions alpha_vantage/async_support/timeseries.py
Loading