Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

F1 score metric for classification #186

Closed
lars-reimann opened this issue Apr 14, 2023 · 1 comment · Fixed by #277
Closed

F1 score metric for classification #186

lars-reimann opened this issue Apr 14, 2023 · 1 comment · Fixed by #277
Assignees
Labels
enhancement 💡 New feature or request released Included in a release

Comments

@lars-reimann
Copy link
Member

lars-reimann commented Apr 14, 2023

Is your feature request related to a problem?

Computing the $F_1$ score of a classifier for a specific class is a common task.

Desired solution

  • New method called f1_score in Classifier
  • Required parameter positive_class to specify which value should be treated as positive (all other classes are treated as negative)
  • Call sklearn.metrics.f1_score

Formula:

$$ \frac{2 \mathit{TP}}{2 \mathit{TP} + \mathit{FP} + \mathit{FN}} $$

Possible alternatives (optional)

No response

Screenshots (optional)

No response

Additional Context (optional)

No response

@lars-reimann lars-reimann added the enhancement 💡 New feature or request label Apr 14, 2023
lars-reimann added a commit that referenced this issue May 5, 2023
Closes #187.
Closes #186 .

### Summary of Changes

Added recall and F1-score functions to the _classifier.

Co-authered-by: [email protected]

---------

Co-authored-by: Lars Reimann <[email protected]>
Co-authored-by: megalinter-bot <[email protected]>
lars-reimann pushed a commit that referenced this issue May 11, 2023
## [0.12.0](v0.11.0...v0.12.0) (2023-05-11)

### Features

* add `learning_rate` to AdaBoost classifier and regressor. ([#251](#251)) ([7f74440](7f74440)), closes [#167](#167)
* add alpha parameter to `lasso_regression` ([#232](#232)) ([b5050b9](b5050b9)), closes [#163](#163)
* add parameter `lasso_ratio` to `ElasticNetRegression` ([#237](#237)) ([4a1a736](4a1a736)), closes [#166](#166)
* Add parameter `number_of_tree` to `RandomForest` classifier and regressor ([#230](#230)) ([414336a](414336a)), closes [#161](#161)
* Added `Table.plot_boxplots` to plot a boxplot for each numerical column in the table ([#254](#254)) ([0203a0c](0203a0c)), closes [#156](#156) [#239](#239)
* Added `Table.plot_histograms` to plot a histogram for each column in the table ([#252](#252)) ([e27d410](e27d410)), closes [#157](#157)
* Added `Table.transform_table` method which returns the transformed Table ([#229](#229)) ([0a9ce72](0a9ce72)), closes [#110](#110)
* Added alpha parameter to `RidgeRegression` ([#231](#231)) ([1ddc948](1ddc948)), closes [#164](#164)
* Added Column#transform ([#270](#270)) ([40fb756](40fb756)), closes [#255](#255)
* Added method `Table.inverse_transform_table` which returns the original table ([#227](#227)) ([846bf23](846bf23)), closes [#111](#111)
* Added parameter `c` to `SupportVectorMachines` ([#267](#267)) ([a88eb8b](a88eb8b)), closes [#169](#169)
* Added parameter `maximum_number_of_learner` and `learner` to `AdaBoost` ([#269](#269)) ([bb5a07e](bb5a07e)), closes [#171](#171) [#173](#173)
* Added parameter `number_of_trees` to `GradientBoosting` ([#268](#268)) ([766f2ff](766f2ff)), closes [#170](#170)
* Allow arguments of type pathlib.Path for file I/O methods ([#228](#228)) ([2b58c82](2b58c82)), closes [#146](#146)
* convert `Schema` to `dict` and format it nicely in a notebook ([#244](#244)) ([ad1cac5](ad1cac5)), closes [#151](#151)
* Convert between Excel file and `Table` ([#233](#233)) ([0d7a998](0d7a998)), closes [#138](#138) [#139](#139)
* convert containers for tabular data to HTML ([#243](#243)) ([683c279](683c279)), closes [#140](#140)
* make `Column` a subclass of `Sequence` ([#245](#245)) ([a35b943](a35b943))
* mark optional hyperparameters as keyword only ([#296](#296)) ([44a41eb](44a41eb)), closes [#278](#278)
* move exceptions back to common package ([#295](#295)) ([a91172c](a91172c)), closes [#177](#177) [#262](#262)
* precision metric for classification ([#272](#272)) ([5adadad](5adadad)), closes [#185](#185)
* Raise error if an untagged table is used instead of a `TaggedTable` ([#234](#234)) ([8eea3dd](8eea3dd)), closes [#192](#192)
* recall and F1-score metrics for classification ([#277](#277)) ([2cf93cc](2cf93cc)), closes [#187](#187) [#186](#186)
* replace prefix `n` with `number_of` ([#250](#250)) ([f4f44a6](f4f44a6)), closes [#171](#171)
* set `alpha` parameter for regularization of `ElasticNetRegression` ([#238](#238)) ([e642d1d](e642d1d)), closes [#165](#165)
* Set `column_names` in `fit` methods of table transformers to be required ([#225](#225)) ([2856296](2856296)), closes [#179](#179)
* set learning rate of Gradient Boosting models ([#253](#253)) ([9ffaf55](9ffaf55)), closes [#168](#168)
* Support vector machine for regression and for classification ([#236](#236)) ([7f6c3bd](7f6c3bd)), closes [#154](#154)
* usable constructor for `Table` ([#294](#294)) ([56a1fc4](56a1fc4)), closes [#266](#266)
* usable constructor for `TaggedTable` ([#299](#299)) ([01c3ad9](01c3ad9)), closes [#293](#293)

### Bug Fixes

* OneHotEncoder no longer creates duplicate column names ([#271](#271)) ([f604666](f604666)), closes [#201](#201)
* selectively ignore one warning instead of all warnings ([#235](#235)) ([3aad07d](3aad07d))
@lars-reimann
Copy link
Member Author

🎉 This issue has been resolved in version 0.12.0 🎉

The release is available on:

Your semantic-release bot 📦🚀

@lars-reimann lars-reimann added the released Included in a release label May 11, 2023
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement 💡 New feature or request released Included in a release
Projects
Archived in project
Development

Successfully merging a pull request may close this issue.

3 participants