-
Notifications
You must be signed in to change notification settings - Fork 4
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add CNN Layers and model support #580
Labels
enhancement 💡
New feature or request
Comments
lars-reimann
pushed a commit
that referenced
this issue
May 6, 2024
) Closes #579, #580, #581 ### Summary of Changes feat: added `Convolutional2DLayer`, `ConvolutionalTranspose2DLayer`, `FlattenLayer`, `MaxPooling2DLayer` and `AvgPooling2DLayer` feat: added `InputConversionImage`, `OutputConversionImageToColumn`, `OutputConversionImageToTable` and `OutputConversionImageToImage` feat: added generic `ImageDataset` feat: added class `ImageSize` and methods `ImageList.sizes` and `Image.size` to get the sizes of the respective images feat: added ability to iterate over `SingleSizeImageList` feat: added param to return filenames in `ImageList.from_files` feat: added option `None` for no activation function in `ForwardLayer` feat: added `Image.__array__` to convert a `Image` to a `numpy.ndarray` feat: added equals check to `OneHotEncoder` fix: fixed bug #581 in removing the Softmax function from the last layer in `NeuralNetworkClassifier` refactor: move `image.utils` to `image._utils` refactor: extracted test devices from `test_image` to `helpers.devices` --------- Co-authored-by: megalinter-bot <[email protected]>
lars-reimann
pushed a commit
that referenced
this issue
May 9, 2024
## [0.24.0](v0.23.0...v0.24.0) (2024-05-09) ### Features * `Column.plot_histogram()` using `Table.plot_histograms` for consistent results ([#726](#726)) ([576492c](576492c)) * `Regressor.summarize_metrics` and `Classifier.summarize_metrics` ([#729](#729)) ([1cc14b1](1cc14b1)), closes [#713](#713) * `Table.keep_only_rows` ([#721](#721)) ([923a6c2](923a6c2)) * `Table.remove_rows` ([#720](#720)) ([a1cdaef](a1cdaef)), closes [#698](#698) * Add `ImageDataset` and Layer for ConvolutionalNeuralNetworks ([#645](#645)) ([5b6d219](5b6d219)), closes [#579](#579) [#580](#580) [#581](#581) * added load_percentage parameter to ImageList.from_files to load a subset of the given files ([#739](#739)) ([0564b52](0564b52)), closes [#736](#736) * added rnn layer and TimeSeries conversion ([#615](#615)) ([6cad203](6cad203)), closes [#614](#614) [#648](#648) [#656](#656) [#601](#601) * Basic implementation of cell with polars ([#734](#734)) ([004630b](004630b)), closes [#712](#712) * deprecate `Table.add_column` and `Table.add_row` ([#723](#723)) ([5dd9d02](5dd9d02)), closes [#722](#722) * deprecated `Table.from_excel_file` and `Table.to_excel_file` ([#728](#728)) ([c89e0bf](c89e0bf)), closes [#727](#727) * Larger histogram plot if table only has one column ([#716](#716)) ([31ffd12](31ffd12)) * polars implementation of a column ([#738](#738)) ([732aa48](732aa48)), closes [#712](#712) * polars implementation of a row ([#733](#733)) ([ff627f6](ff627f6)), closes [#712](#712) * polars implementation of table ([#744](#744)) ([fc49895](fc49895)), closes [#638](#638) [#641](#641) [#649](#649) [#712](#712) * regularization for decision trees and random forests ([#730](#730)) ([102de2d](102de2d)), closes [#700](#700) * Remove device information in image class ([#735](#735)) ([d783caa](d783caa)), closes [#524](#524) * return fitted transformer and transformed table from `fit_and_transform` ([#724](#724)) ([2960d35](2960d35)), closes [#613](#613) ### Bug Fixes * make `Image.clone` internal ([#725](#725)) ([215a472](215a472)), closes [#626](#626) ### Performance Improvements * improved performance of `TabularDataset.__eq__` by a factor of up to 2 ([#697](#697)) ([cd7f55b](cd7f55b))
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Is your feature request related to a problem?
Add CNN Layers and model support
Desired solution
The layers should be consistent to the already implemented fnn layer & models
Possible alternatives (optional)
No response
Screenshots (optional)
No response
Additional Context (optional)
No response
The text was updated successfully, but these errors were encountered: