Skip to content

Fast uncertainty quantification for scientific machine learning (SciML) and differential equations

License

Notifications You must be signed in to change notification settings

SciML/SciMLExpectations.jl

Repository files navigation

SciMLExpectations.jl: Expectated Values of Simulations and Uncertainty Quantification

Join the chat at https://julialang.zulipchat.com #sciml-bridged Global Docs

codecov Build Status

ColPrac: Contributor's Guide on Collaborative Practices for Community Packages SciML Code Style

This package is still under heavy construction. Use at your own risk!

SciMLExpectations.jl is a package for quantifying the uncertainties of simulations by calculating the expectations of observables with respect to input uncertainties. Its goal is to make it fast and easy to compute solution moments in a differentiable way in order to enable fast optimization under uncertainty.

Tutorials and Documentation

For information on using the package, see the stable documentation. Use the in-development documentation for the version of the documentation, which contains the unreleased features.

Example

using SciMLExpectations, OrdinaryDiffEq, Distributions, Cubature

function eom!(du, u, p, t, A)
    du .= A * u
end

u0 = [1.0, 1.0]
tspan = (0.0, 3.0)
p = [1.0; 2.0]
A = [0.0 1.0; -p[1] -p[2]]
prob = ODEProblem((du, u, p, t) -> eom!(du, u, p, t, A), u0, tspan, p)
u0s_dist = (Uniform(1, 10), truncated(Normal(3.0, 1), 0.0, 6.0))
gd = GenericDistribution(u0s_dist...)
cov(x, u, p) = x, p

sm = SystemMap(prob, Tsit5(), save_everystep = false)

analytical = (exp(A * tspan[end]) * [mean(d) for d in u0s_dist])
analytical
julia> analytical
2-element Vector{Float64}:
  1.5433991194037804
 -1.120209038276938
g(sol, p) = sol[:, end]
exprob = ExpectationProblem(sm, g, cov, gd)
sol = solve(exprob, Koopman(); quadalg = CubatureJLh(),
            ireltol = 1e-3, iabstol = 1e-3)
sol.u # Expectation of the states 1 and 2 at the final time point
2-element Vector{Float64}:
  1.5433860531082695
 -1.1201922503747408

Approximate error on the expectation

sol.resid #= 2-element Vector{Float64}: 7.193424502016654e-5 5.2074632876847327e-5 =#