본 강의는 머신러닝, 딥러닝을 배우기 위해 기본적으로 이해해야하는 Python을 다룹니다. 빠른 시간 내에 Python 기초 문법을 복습하고 머신러닝, 딥러닝의 근간을 이루는 Numpy, Pandas와 친숙해지고 싶은 분에게 추천합니다. 참고 - 머신러닝/딥러닝을 위한 Python
- 강좌명: 머신러닝/딥러닝을 위한 Python
- 강의자명: 가천대학교 산업경영공학과 최성철 교수 ([email protected], Director of TEAMLAB)
- Email: [email protected]
conda create -n ml_python python=3.5
conda install numpy seaborn scikit-learn jupyter
conda install nltk gensim matplotlib
- Pythonic Code Overview
- Split & Join
- List Comprehension
- Enumerate & Zip
- Map & Reduce
- Asterisk
- Lab: Simple Linear algebra concepts
- Lab: Simple Linear algebra codes
- Assignment: Linear algebra with pythonic code
- Assignment: 연산자 끼워넣기
- Assignment: 톱니바퀴
- Numpy overview
- ndarray
- Handling shape
- Indexing & Slicing
- Creation functions
- Opertaion functions
- Array operations
- Comparisons
- Boolean & fancy Index
- Numpy data i/o
- Assignment: Numpy in a nutshell
- Pandas overview
- Series
- DataFrame
- Selection & Drop
- Dataframe operations
- lambda, map apply
- Pandas builit-in functions
- Lab Assignment: Build a matrix
- Groupby I
- Groupby II
- Casestudy
- Pivot table & Crosstab
- Merg & Concat
- Database connection & Persistance
- Objective oriented programming overview
- Objects in Python
- Lab: Note and Notebook
- OOP characteristics
- Decorators, Static And Class Methods
- Abstract Classes
- Linear regression overview
- Cost functions
- Linear Equality
- Gradient descent approach
- Linear regression wtih gradient descent
- Linear regression wtih Numpy
- Multivariate linear regression models
- Multivariate linear regression with NumPy
-
- Regularization - L1 and L2
- Implementation of generalization with NumPy
- Linear regression with sklearn
- Logistic regression overview
- Sigmoid function
- Cost function
- Logistic regression implementation with Numpy
- Maximum Likelihood estimation
- Regularization problems
- Logistic regresion with sklearn
- Softmax fucntion for Multi-class classification
- Cross entropy loss function
- Softmax Logistic Regression
- Performance measures for classification