Skip to content

THUDM/P2TAG

Repository files navigation

Official Implementation of the P2TAG Paper

This code repository is the official implementation of the P2TAG paper.

Requirements

Most of the requirements are listed in the requirements.txt file. The torch-geometric and dgl libraries are required. The specific versions depend on your CUDA driver version. Please refer to their official websites for installation instructions.

  • torch==1.10.2
  • torch-geometric==2.0.3
  • dgl==0.8.0

Datasets

As shown in the paper, we utilize the following datasets: ["arxiv", "products", "computers", "children", "history", "photo"]. We provide the datasets for "computers", "children", "history", and "photo" in the ./data folder.

The ‘arxiv’ and ‘products’ datasets can be downloaded automatically the first time the code is run. The raw text for the nodes in these two datasets should be downloaded according to the instructions on the OGB website. For a detailed introduction, please refer to this document.

Running the Experiments

Pre-training

Pre-training experiments can be run using the pre_train.sh script located in the ./bash_scripts folder. We use WandB (https://wandb.ai/) for experiment management. Please specify run_entity as your WandB username in the running scripts.

Few-shot Node Classification

Experiments for few-shot node classification can be run using the few_shot_eval.sh script in the ./bash_scripts folder.

Introduction to Hyper-parameters

Hyper-parameters are specified in utils/functions.py. Important hyper-parameters include:

- label_as_init: True/False denotes the P_{G} component in the P2TAG model.
- LM_as_init: True/False denotes the W_{t} component in the P2TAG model.
- prompt_type: "default"/"only_first" (readout type, where default is mean pooling, and only_first uses the first node embedding).
- few_shot_setting: "3,3"/"3,5"/"3,10" (denotes the few-shot setting, 3-way 3-shot, 3-way 5-shot, 3-way 10-shot, respectively).

Examples of Running Pre-training and Few-shot Node Classification

# Pre-training
bash bash_scripts/pre_train.sh

# Few-shot node classification
bash bash_scripts/few_shot_eval.sh

Reproduce scripts

We provide the scripts to reproduce the results in the ./reproduce_scripts folder, one can run the scripts to reproduce the results in the paper. We also provide pre-trained models. If your focus is only on the prompting process, you can download the models from this link.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published