forked from mesolitica/vllm-whisper
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Model] Initialize Phi-3-vision support (vllm-project#4986)
- Loading branch information
Showing
8 changed files
with
571 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
import os | ||
import subprocess | ||
|
||
from PIL import Image | ||
|
||
from vllm import LLM, SamplingParams | ||
from vllm.multimodal.image import ImagePixelData | ||
|
||
|
||
def run_phi3v(): | ||
model_path = "microsoft/Phi-3-vision-128k-instruct" | ||
llm = LLM( | ||
model=model_path, | ||
trust_remote_code=True, | ||
max_model_len=4096, | ||
image_input_type="pixel_values", | ||
image_token_id=32044, | ||
image_input_shape="1,3,1008,1344", | ||
image_feature_size=1921, | ||
disable_image_processor=False, | ||
) | ||
|
||
image = Image.open("images/cherry_blossom.jpg") | ||
|
||
# single-image prompt | ||
prompt = "<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n" # noqa: E501 | ||
prompt = prompt.replace("<|image_1|>", "<|image|>" * 1921 + "<s>") | ||
|
||
sampling_params = SamplingParams(temperature=0, max_tokens=64) | ||
|
||
outputs = llm.generate({ | ||
"prompt": prompt, | ||
"sampling_params": sampling_params, | ||
"multi_modal_data": ImagePixelData(image), | ||
}) | ||
for o in outputs: | ||
generated_text = o.outputs[0].text | ||
print(generated_text) | ||
|
||
|
||
if __name__ == "__main__": | ||
s3_bucket_path = "s3://air-example-data-2/vllm_opensource_llava/" | ||
local_directory = "images" | ||
|
||
# Make sure the local directory exists or create it | ||
os.makedirs(local_directory, exist_ok=True) | ||
|
||
# Use AWS CLI to sync the directory, assume anonymous access | ||
subprocess.check_call([ | ||
"aws", | ||
"s3", | ||
"sync", | ||
s3_bucket_path, | ||
local_directory, | ||
"--no-sign-request", | ||
]) | ||
run_phi3v() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
from typing import List, Tuple | ||
|
||
import pytest | ||
from transformers import AutoTokenizer | ||
|
||
from vllm.config import VisionLanguageConfig | ||
from vllm.utils import is_cpu | ||
|
||
from ..conftest import IMAGE_FILES | ||
|
||
pytestmark = pytest.mark.llava | ||
|
||
# The image token is placed before "user" on purpose so that the test can pass | ||
HF_IMAGE_PROMPTS = [ | ||
"<|user|>\n<|image_1|>\nWhat's the content of the image?<|end|>\n<|assistant|>\n", # noqa: E501 | ||
"<|user|>\n<|image_1|>\nWhat is the season?<|end|>\n<|assistant|>\n", | ||
] | ||
|
||
assert len(HF_IMAGE_PROMPTS) == len(IMAGE_FILES) | ||
|
||
|
||
def iter_phi3v_configs(model_name: str): | ||
image_hw_to_feature_size = { | ||
(1008, 1344): 1921, | ||
} | ||
|
||
for (h, w), f in image_hw_to_feature_size.items(): | ||
for input_type, input_shape in [ | ||
(VisionLanguageConfig.ImageInputType.PIXEL_VALUES, (1, 3, h, w)), | ||
]: | ||
yield (model_name, | ||
VisionLanguageConfig(image_input_type=input_type, | ||
image_feature_size=f, | ||
image_token_id=32044, | ||
image_input_shape=input_shape, | ||
image_processor=model_name, | ||
image_processor_revision=None)) | ||
|
||
|
||
model_and_vl_config = [ | ||
*iter_phi3v_configs("microsoft/Phi-3-vision-128k-instruct"), | ||
] | ||
|
||
|
||
def vllm_to_hf_output(vllm_output: Tuple[List[int], str], | ||
vlm_config: VisionLanguageConfig, model_id: str): | ||
"""Sanitize vllm output to be comparable with hf output. | ||
The function reduces `input_ids` from 1, 32000, 32000, ..., 32000, | ||
x1, x2, x3 ... to 1, 32000, x1, x2, x3 ... | ||
It also reduces `output_str` from "<image><image>bla" to "bla". | ||
""" | ||
input_ids, output_str = vllm_output | ||
image_token_id = vlm_config.image_token_id | ||
|
||
tokenizer = AutoTokenizer.from_pretrained(model_id) | ||
image_token_str = tokenizer.decode(image_token_id) | ||
|
||
hf_input_ids = [ | ||
input_id if input_id != image_token_id else 0 | ||
for idx, input_id in enumerate(input_ids) | ||
] | ||
hf_output_str = output_str \ | ||
.replace(image_token_str * vlm_config.image_feature_size, "") \ | ||
.replace("<s>", " ").replace("<|user|>", "") \ | ||
.replace("<|end|>\n<|assistant|>", " ") | ||
|
||
return hf_input_ids, hf_output_str | ||
|
||
|
||
target_dtype = "half" | ||
if is_cpu(): | ||
target_dtype = "bfloat16" | ||
|
||
|
||
# TODO: Add test for `tensor_parallel_size` [ref: PR #3883] | ||
# Since we use _attn_implementation="eager" for hf_runner, here is | ||
# numeric difference for longer context and test can't pass | ||
@pytest.mark.parametrize("model_and_config", model_and_vl_config) | ||
@pytest.mark.parametrize("dtype", [target_dtype]) | ||
@pytest.mark.parametrize("max_tokens", [8]) | ||
def test_models(hf_runner, vllm_runner, hf_images, vllm_images, | ||
model_and_config, dtype: str, max_tokens: int) -> None: | ||
"""Inference result should be the same between hf and vllm. | ||
All the image fixtures for the test is under tests/images. | ||
For huggingface runner, we provide the PIL images as input. | ||
For vllm runner, we provide MultiModalData objects and corresponding | ||
vision language config as input. | ||
Note, the text input is also adjusted to abide by vllm contract. | ||
The text output is sanitized to be able to compare with hf. | ||
""" | ||
model_id, vlm_config = model_and_config | ||
|
||
# use eager mode for hf runner, since phi3_v didn't work with flash_attn | ||
hf_model_kwargs = {"_attn_implementation": "eager"} | ||
with hf_runner(model_id, dtype=dtype, | ||
model_kwargs=hf_model_kwargs) as hf_model: | ||
hf_outputs = hf_model.generate_greedy(HF_IMAGE_PROMPTS, | ||
max_tokens, | ||
images=hf_images) | ||
|
||
vllm_image_prompts = [ | ||
p.replace("<|image_1|>", | ||
"<|image|>" * vlm_config.image_feature_size + "<s>") | ||
for p in HF_IMAGE_PROMPTS | ||
] | ||
|
||
with vllm_runner(model_id, | ||
max_model_len=2048, | ||
dtype=dtype, | ||
enforce_eager=True, | ||
**vlm_config.as_cli_args_dict()) as vllm_model: | ||
vllm_outputs = vllm_model.generate_greedy(vllm_image_prompts, | ||
max_tokens, | ||
images=vllm_images) | ||
|
||
for i in range(len(HF_IMAGE_PROMPTS)): | ||
hf_output_ids, hf_output_str = hf_outputs[i] | ||
vllm_output_ids, vllm_output_str = vllm_to_hf_output( | ||
vllm_outputs[i], vlm_config, model_id) | ||
assert hf_output_str == vllm_output_str, ( | ||
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}") | ||
assert hf_output_ids == vllm_output_ids, ( | ||
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.