Skip to content

Commit

Permalink
data release note
Browse files Browse the repository at this point in the history
  • Loading branch information
haoning.wu committed Nov 21, 2023
1 parent 45727ac commit 29366ef
Show file tree
Hide file tree
Showing 8 changed files with 5,298 additions and 5 deletions.
5 changes: 3 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,10 +1,11 @@
# DOVER

Official Code for [ICCV2023] Paper *"Exploring Video Quality Assessment on User Generated Contents from Aesthetic and Technical Perspectives"*.
Official Code, Demo, Weights for the [Disentangled Objective Video Quality Evaluator (DOVER)](arxiv.org/abs/2211.04894v3).
Official Code, Demo, Weights for the [Disentangled Objective Video Quality Evaluator (DOVER)](arxiv.org/abs/2211.04894).

- 21 Nov, 2023: The release note of [DIVIDE database](get_divide_dataset/) is updated.
- 1 Aug, 2023: ONNX conversion script for DOVER has been released. Short tip: after installation, run [this](https://github.com/VQAssessment/DOVER/blob/master/convert_to_onnx.py) and then [this](https://github.com/VQAssessment/DOVER/blob/master/onnx_inference.py).
- 17 Jul, 2023: DOVER has been accepted by ICCV2023. We will release the DIVIDE-3k dataset to train DOVER++ via fully-supervised LVBS soon.
- 17 Jul, 2023: DOVER has been accepted by ICCV2023.
- 9 Feb, 2023: **DOVER-Mobile** is available! Evaluate on CPU with Very High Speed!
- 16 Jan, 2023: Full Training Code Available (include LVBS). See below.
- 10 Dec, 2022: Now the evaluation tool can directly predict a fused score for any video. See [here](https://github.com/QualityAssessment/DOVER#new-get-the-fused-quality-score-for-use).
Expand Down
91 changes: 91 additions & 0 deletions divide.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
name: DOVER
num_epochs: 20
l_num_epochs: 10
warmup_epochs: 2.5
ema: true
save_model: true
batch_size: 16
num_workers: 8
split_seed: 42

wandb:
project_name: DOVER

data:
val-dividemaxwell:
type: ViewDecompositionDataset
args:
weight: 0.598
phase: test
anno_file: ./examplar_data_labels/DIVIDE_MaxWell/val_labels.txt
data_prefix: ../datasets/DIVIDE_MaxWell/videos/
sample_types:
technical:
fragments_h: 7
fragments_w: 7
fsize_h: 32
fsize_w: 32
aligned: 32
clip_len: 32
frame_interval: 2
num_clips: 3
aesthetic:
size_h: 224
size_w: 224
clip_len: 32
frame_interval: 2
t_frag: 32
num_clips: 1
train-dividemaxwell:
type: ViewDecompositionDataset
args:
weight: 0.598
phase: train
fully_supervised: True

anno_file: ./examplar_data_labels/DIVIDE_MaxWell/train_labels.txt
data_prefix: ../datasets/DIVIDE_MaxWell/videos/
sample_types:
technical:
fragments_h: 7
fragments_w: 7
fsize_h: 32
fsize_w: 32
aligned: 32
clip_len: 32
frame_interval: 2
num_clips: 1
aesthetic:
size_h: 224
size_w: 224
clip_len: 32
frame_interval: 2
t_frag: 32
num_clips: 1


model:
type: DOVER
args:
backbone:
technical:
type: swin_tiny_grpb
checkpoint: true
pretrained:
aesthetic:
type: conv_tiny
backbone_preserve_keys: technical,aesthetic
divide_head: true
vqa_head:
in_channels: 768
hidden_channels: 64

optimizer:
lr: !!float 1e-3
backbone_lr_mult: !!float 1e-1
wd: 0.05

test_load_path: ./pretrained_weights/DOVER.pth



2 changes: 0 additions & 2 deletions dover/models/conv_backbone.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,6 @@
from timm.models.layers import trunc_normal_, DropPath
from timm.models.registry import register_model

from open_clip import CLIP3D
import open_clip

class GRN(nn.Module):
""" GRN (Global Response Normalization) layer
Expand Down
2 changes: 1 addition & 1 deletion dover/version.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
__version__ = "0.5.0"
__version__ = "1.0.0"


def parse_version_info(version_str):
Expand Down
Loading

0 comments on commit 29366ef

Please sign in to comment.