Skip to content

用简单的GAN网络生成64*64像素的人脸(Generating 64*64 Pixel Face Using GAN Network)

Notifications You must be signed in to change notification settings

VacantHusky/GAN_facialGeneration_64pixel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GAN_facialGeneration_64pixel

用GAN生成人脸

安装要求

  • nvidia显卡
  • CalebA人脸数据集
  • python3
  • 一些python库
  • cuda、cudnn(与tensorflow-gpu所对应的版本)

测试

训练模型

这里使用的人脸训练集是CalebA人脸数据集。
CalebA人脸数据集 是香港中文大学的开放数据,包含10,177个名人身份的202,599张人脸图片,并且都做好了特征标记,这对人脸相关的训练是非常好用的数据集。
将其中的img_align_celeba.zip解压,得到一个包含202,599张人脸图片的文件夹,为了凑个整,你可以把自己的照片放进去(不需要修改图片和图片名称)。
打开 main.py。
修改其中的 image_path 参数为你的人脸数据集目录。
然后运行 main.py,开始训练。
你可以随时终止运行,在运行的过程中会自动保存网络,保存路径为./my_net/。
训练过程中部分图片如下:(展示的分别是第1次,第101次,第1001次,第18001次,第72001次训练结果)
加载失败 加载失败 加载失败 加载失败 加载失败

生成gif图

  • 原理

gan网络中有两个神经网络:鉴别网络和生成网络。生成网络是根据一个N维向量生成的人脸,在训练时,我们随机生成这个N维向量。
这个N维向量即是一个N维空间中的一个点,所以N维空间中每一个点就是一个人脸。若a脸对应于A点,b脸对应于B点,那么我们连接A、B两点,从A点出发走向B点,就可以得到由a脸逐渐变化为b脸。
这里我们生成的是上图倒数第三列的人脸变化的gif图。

  • 实现

运行showimg.py,在testimg目录下生成了一个gif图
gif图如下:
加载失败
gif的每一帧:
加载失败

  • 问题

在利用训练好的网络生成图片时发现了一个问题,生成的图片质量很不好,即使使用和示例图片相同的随机初始向量也依然如此。
是因为训练时我们每次给生成网络喂食100个随机初始向量,然后其生成100张人脸。
所以生成图片时必须使随机初始向量接近于100个,并且尽量随机。
当我想生成从A脸到B脸过渡的图片时,其每个初始向量在一条线上,不是随机分布的。
所以我们取10个我们所需的初始向量,再加上90个随机初始向量,凑成100个符合要求的随机初始向量,再取结果的前10张图片。

已训练好的模型

训练了一个晚上,从半夜两点到第二天中午十二点,晚上电脑风扇一直在响。共训练了72000次。
如果你想使用我已训练好的模型,可以联系我,email:[email protected]

鸣谢

该项目参考于阿里云天池课堂中的代码,源代码是生成手写数字。
感谢以下项目:

About

用简单的GAN网络生成64*64像素的人脸(Generating 64*64 Pixel Face Using GAN Network)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages