Link to Data: Google Drive
The released data includes for the following for each platform and each application ($PLAT/$APP/*
):
- Walk clock time (
bench-.*
) - TF or Pytorch profile output (
prof-.*
) - NSYS output (
nsys-.*nsys-rep
) - NCU output (
ncu-.*
)
The NSYS file can be read by NSIGHT Systems. The NCU file is raw text format (prepended with a header row and then data in CSV form. Data follows after a line that says -- PROF --)
The summaries/
directory includes:
- A file for each platform indicating the smallest and largest batch size we ran (
$PLAT-<small/large>-batch-list
) - For each platform / application: summaries extracted from the NSYS output (Can be recreated from
nsys-rep
files)
The postproc/
directory includes framework operator traces produced from framework profiler data ($PLAT/$APP/op-trace-*.csv
)
Finally, the data we recorded on GEMM performance can be found here.
Setup: Make sure you have a conda installation. Create a new environment for casio by following these instructions:
MAKE SURE TO FOLLOW THESE IN ORDER
$ conda create -n casio-torch python=3.9
# Press enter to accept
$ conda activate casio-torch
# Install requirements
$ pip install -r requirements.txt
NOTE: mmcv-full will take a WHILE to install. This is a one-time thing.
For tensorflow, use the utils/tf1-docker.sh script to launch a docker container.
NOTE: YOU WILL END UP SOURCE'ING env.sh TWICE!
$ conda activate casio-torch
$ source env.sh
==============================================
REMEMBER: RUN THIS INSIDE THE DOCKER CONTAINER
FOR TENSORFLOW v1 APPLICATIONS!
MIKE WILL NOT ANSWER THIS QUESTION!
==============================================
What platform is this? (cpu, p100, v100, a100): <type of gpu>
What gpu should we use? (cuda:0, cuda:1, ...): cuda:<N>
Path to CASIO: /nobackup/medavies/casio
Platform: <type of gpu>
Device: cuda:<N>
$ cd Swin-Transformer
$ ./runall.sh
$ conda activate casio-torch
$ source env.sh
...
$ cd muzero
$ ./runall.sh
DOWNLOAD DATA AND RUN SETUP FIRST
$ conda activate casio-torch
$ cd qdtrack/
$ wget cs.wisc.edu/~davies/qdtrack-data.tar.xz
$ tar xvf qdtrack-data.tar.xz
$ python setup.py develop
$ cd ..
Running qdtrack:
$ conda activate casio-torch
$ source env.sh
...
$ cd qdtrack
$ ./runall.sh
$ source env.sh
$ ./utils/tf1-docker.sh
$ cd /work
$ source env.sh
...
$ pip install pydoe
$ cd PINNs
$ ./runall.sh
$ source env.sh
$ ./utils/tf1-docker.sh
$ cd /work
$ source env.sh
...
$ cd tabnet
$ ./runall.sh
DOWNLOAD DATA AND RUN SETUP FIRST
$ cd meshgraphnets
$ wget cs.wisc.edu/~davies/mgn-datasets.tar.xz
$ tar xvf mgn-datasets.tar.xz
$ cd ..
Running meshgraphnets:
$ source env.sh
$ ./utils/tf1-docker.sh
$ cd /work
$ source env.sh
...
$ cd meshgraphnets
$ pip install -r requirements
$ cd /work
$ ./meshgraphnets/runall.sh