Official implementation of "QVRF: A QUANTIZATION-ERROR-AWARE VARIABLE RATE FRAMEWORK FOR LEARNED IMAGE COMPRESSION"
- Environment
- Dataset
- Inference
- [RD Results](#RD Results)
- CompressAI: https://github.com/InterDigitalInc/CompressAI
- QVRF:https://github.com/bytedance/QRAF
- SADN+QVRF:https://github.com/VincentChandelier/SADN-QVRF
- ELIC+QVRF: https://github.com/VincentChandelier/ELIC-QVRF
- STF+QVRF: https://github.com/VincentChandelier/STF-QVRF
- GACN+QVRF: https://github.com/VincentChandelier/GACN-QVRF
- Zhihu Article: https://zhuanlan.zhihu.com/p/627068173
Recommend using Miniconda.
#python>=3.6 should be fine.
conda create -n qraf python=3.8
conda activate qraf
pip install compressai==1.1.5
#pip install compressai==1.1.5 -i https://pypi.mirrors.ustc.edu.cn/simple/
mkdir dataset
mv Kodak ./dataset
Download Collection of Kodak or Kodak for Testing.
Using Trainningdataset_Preprocessing.py to select the largest 8000 images from imageNet and 584 images from CLIC2020 and to preprocess the images as the training dataset.
-
dataset
: dir. "Directory of training and validation dataset." -
epochs
: int, default1000
"Number of epochs" -
learning-rate
: float, default1e-4
"Learning rate." -
num-workers
: int, default4
"Dataloaders threads" -
batch-size
: int, default16
"Batch size" -
test-batch-size
: int, default64
"Test batch size" -
learning-rate
: float, default1e-4
"Learning rate." -
patch-size
: int, default256 256
"Size of the patches to be cropped." -
cuda
: "Use cuda." -
save
: "Save model to disk." -
seed
: float, default1926
"Set random seed for reproducibility" -
clip_max_norm
: float, default1.0
"Set random seed for reproducibility" -
checkpoint
: str, "Checkpoint path." -
stage
: int, default1
"Trainning stage." -
ste
: int, default0
"Using ste round in the finetune stage" -
loadFromPretrainedSinglemodel
: int, default0
"Load fixed-rate model " -
refresh
: int, default0
"Refresh the setting of optimizer and epoch"
python3 train.py -d ./dataset -e 2000 -lr 1e-4 -n 8 --batch-size 8 --test-batch-size 64 --aux-learning-rate 1e-3 --patch-size 256 256 --cuda --save --seed 1926 --clip_max_norm 1.0 --stage 1 --ste 0 --loadFromPretrainedSinglemodel 0
python3 train.py -d ./dataset -e 500 -lr 1e-4 -n 8 --batch-size 8 --test-batch-size 64 --aux-learning-rate 1e-3 --patch-size 256 256 --cuda --save --seed 1926 --clip_max_norm 1.0 --stage 2 --ste 0 --refresh 1 --loadFromPretrainedSinglemodel 0 --checkpoint checkpoint_best_loss.pth.tar |tee Cheng2020Noise.txt
Actually, you can load a fixed-rate model and finetune it with QVRF.
python3 train.py -d ./dataset -e 500 -lr 1e-4 -n 8 --batch-size 8 --test-batch-size 64 --aux-learning-rate 1e-3 --patch-size 256 256 --cuda --save --seed 1926 --clip_max_norm 1.0 --stage 2 --ste 0 --refresh 1 --loadFromPretrainedSinglemodel 1 --checkpoint cheng2020_attn-mse-6-730501f2.pth.tar |tee Cheng2020Noise.txt
python3 train.py -d ./dataset -e 500 -lr 1e-4 -n 8 --batch-size 8 --test-batch-size 64 --aux-learning-rate 1e-3 --patch-size 256 256 --cuda --save --seed 1926 --clip_max_norm 1.0 --stage 3 --ste 1 --refresh 1 --loadFromPretrainedSinglemodel 0 --checkpoint checkpoint_best_loss.pth.tar |tee Cheng2020STE.txt
Once the model is trained, we need to run update.py to fix the entropy model
-
name
: str, "Exported model name" -
dir
: str, "Exported model directory."
python3 update.py checkpoint_best_loss.pth.tar -n Cheng2020VR
Download checkpoint variable rate model of Cheng2020 for Inference.
-
dataset
: str, "Test dataset path." -
s
: int, default2
"Discrete bitrate index." -
output_path
: str, "The name of reconstructed dir." -
p
: str, "Checkpoint path." -
patch
: int, default64
. "Padding size." -
factormode
: int, between[0, 1]
, default0
. "Whether to choose continuous bitrate adaption." -
factor
: float between[0.5, 12]
, default1.5
. "Reciprocal of continuous bitrate quantization bin size."
python3 Inference.py --dataset TestDataset --s 2 --output_path output_pathName -p CheckpointPath --patch 64 --factormode 1 --factor 0.1
For all discrete bitrate results:
python3 Inference.py --dataset ./dataset/Kodak --s 8 --output_path AttentionVRSTE -p ./Cheng2020VR.pth.tar --patch 64 --factormode 0 --factor 0
For discrete bitrate results at a assign Index: Index belongs in {0, 1, 2, 3, 4, 5, 6, 7}
python3 Inference.py --dataset ./dataset/Kodak --s Index --output_path AttentionVRSTE -p ./Cheng2020VR.pth.tar --patch 64 --factormode 0 --factor 0
For example continuous bitrate results:
python3 Inference.py --dataset ./dataset/Kodak --s 2 --output_path AttentionVRSTE -p ./Cheng2020VR.pth.tar --patch 64 --factormode 1 --factor 0.1
Change arbitrary quantization bin size in the range of [0.5, 12] at a quantization bin size 1/QBS. (1/QBS in range of [0.5, 12])
python3 Inference.py --dataset ./dataset/Kodak --s 2 --output_path AttentionVRSTE -p ./Cheng2020VR.pth.tar --patch 64 --factormode 1 --factor 1/QBS
A higher bitrate corresponds to a larger factor value which is the reciprocal of quantization bin size.
From public code and paper, the models of Cheng2020 only trained for the low and medium rate with lambda belonging to {0.0016, 0.0032, 0.0075, 0.015, 0.03, 0.045}.
We re-trained Cheng2020 on our training dataset following the original paper setting with lambda belonging to {0.0018, 0.0035, 0.0067, 0.0130, 0.0250, 0.0483, 0.0932, 0.1800} for a fair comparison.
Using the predefined Lagrange multiplier set {0.0018, 0.0035, 0.0067, 0.0130, 0.025, 0.0483, 0.0932, 0.18, 0.36, 0.72, 1.44} with can achieve better results in high bitrate.
You can download the checkpoint for testing the result with the predefined Lagrange multiplier set {0.0018, 0.0035, 0.0067, 0.0130, 0.025, 0.0483, 0.0932, 0.18, 0.36, 0.72, 1.44}.
We used the 8 pretrained discrete models for Balle et al., Minnen et al. from compressai as the benchmark.
We re-trained 8 Cheng2020 models on our training dataset from low bitrate and high bitrate (all the models use channel numbers of 192 for comparison).
@INPROCEEDINGS{10222717, author={Tong, Kedeng and Wu, Yaojun and Li, Yue and Zhang, Kai and Zhang, Li and Jin, Xin}, booktitle={2023 IEEE International Conference on Image Processing (ICIP)}, title={QVRF: A Quantization-Error-Aware Variable Rate Framework for Learned Image Compression}, year={2023}, volume={}, number={}, pages={1310-1314}, doi={10.1109/ICIP49359.2023.10222717}}