Skip to content

Learning Calibrated-Guidance for Object Detection in Aerial Images

License

Notifications You must be signed in to change notification settings

WeiZongqi/CG-Net

Repository files navigation

Object detection is one of the most fundamental yet challenging research topics in the domain of computer vision. Recently, the study on this topic in aerial images has made tremendous progress. However, complex background and worse imaging quality are obvious problems in aerial object detection. Most state-of-the-art approaches tend to develop elaborate attention mechanisms for the space-time feature calibrations with arduous computational complexity, while surprisingly ignoring the importance of feature calibrations in channel-wise. In this work, we propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance channel communications in a feature transformer fashion, which can adaptively determine the calibration weights for each channel based on the global feature affinity correlations. Specifically, for a given set of feature maps, CG first computes the feature similarity between each channel and the remaining channels as the intermediary calibration guidance. Then, re-representing each channel by aggregating all the channels weighted together via the guidance operation. Our CG is a general module that can be plugged into any deep neural networks, which is named as CG-Net. To demonstrate its effectiveness and efficiency, extensive experiments are carried out on both oriented object detection task and horizontal object detection task in aerial images. Experimental results on two challenging benchmarks (\ie, DOTA and HRSC2016) demonstrate that our CG-Net can achieve the new state-of-the-art performance in accuracy with a fair computational overhead.


Introduction

This codebase is created to build benchmarks for object detection in aerial images. It is modified from mmdetection. The master branch works with PyTorch 1.1 or higher. If you would like to use PyTorch 0.4.1, please checkout to the pytorch-0.4.1 branch.

Results

Visualization results for oriented object detection on the test set of DOTA. Different class results

Comparison to the baseline on DOTA for oriented object detection with ResNet-101. The figures with blue boxes are the results of the baseline and pink boxes are the results of our proposed CG-Net. Baseline and CG-Net results

Experiment

ImageNet Pretrained Model from Pytorch

The effectiveness of our proposed methods with different backbone network on the test of DOTA.

Backbone +CG Weight mAP(%)
ResNet-50 download 73.26
ResNet-50 + download 74.21
ResNet-101 download 73.06
ResNet-101 + download 74.30
ResNet-152 download 72.78
ResNet-152 + download 73.53

CG-Net Results in DOTA.

Backbone Aug Rotate Task Weight mAP(%)
ResNet-101 + Oriented download 77.89
ResNet-101 + Horizontal download 78.26

Installation

Please refer to INSTALL.md for installation.

Get Started

Please see GETTING_STARTED.md for the basic usage of mmdetection.

Contributing

We appreciate all contributions to improve benchmarks for object detection in aerial images.

Citing

If you use our work, please consider citing:

@InProceedings{liang2021learning,
      title={Learning Calibrated-Guidance for Object Detection in Aerial Images}, 
      author={Dong, Liang and Zongqi, Wei and Dong, Zhang and Qixiang, Geng and Liyan, Zhang and Han, Sun and Huiyu, Zhou and Mingqiang, Wei and Pan, Gao},
      booktitle ={IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
      year={2021}
}

Thanks to the Third Party Libs

Pytorch

mmdetection

AerialDetection

About

Learning Calibrated-Guidance for Object Detection in Aerial Images

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published