Skip to content

Modular-HER is revised from OpenAI baselines and supports many improvements for Hindsight Experience Replay as modules.

License

Notifications You must be signed in to change notification settings

YangRui2015/Modular_HER

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Modular-HER

GitHub GitHub code size in bytes GitHub last commit

Modular-HER is revised from OpenAI baselines and supports many improvements for Hindsight Experience Replay (HER) as modules. We aim to provide a more modular, readable and concise package for Multi-goal Reinforcement Learning.

Welcome everyone to contribute suggestions or code !

Functions

Prerequisites

Require python3 (>=3.5), tensorflow (>=1.4,<=1.14) and system packages CMake, OpenMPI and zlib. Those can be installed as follows

Ubuntu :

sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev

Mac OS X :

With Homebrew installed, run the following:

brew install cmake openmpi

Installation

git clone https://github.com/YangRui2015/Modular_HER.git
cd Modular_HER
pip install -e .

Usage

Trainging DDPG and save logs and models.

python -m mher.run --env=FetchReach-v1 --num_epoch 30 --num_env 1 --sampler random --play_episodes 5 --log_path=~/logs/fetchreach/ --save_path=~/logs/models/fetchreach_ddpg/

Trainging HER + DDPG with different sampler ('her_future', 'her_random', 'her_last', 'her_episode' are supported).

python -m mher.run --env=FetchReach-v1 --num_epoch 30 --num_env 1 --sampler her_future --play_episodes 5 --log_path=~/logs/fetchreach/ --save_path=~/logs/models/fetchreach_herfuture/

Training SAC + HER.

python -m mher.run  --env=FetchReach-v1 --num_epoch 50  --algo sac --sac_alpha 0.05 --sampler her_episode 

All support sampler flags.

Group Samplers
Random sampler random
HER her_future, her_episode, her_last, her_random
Nstep nstep, nstep_her_future, nstep_her_epsisode, nstep_her_last, nstep_her_random
Priority priority, priority_her_future, priority_her_episode, priority_her_random, priority_her_last

Results

We use a group of test parameters in DEFAULT_ENV_PARAMS for performance comparison in FetchReach-v1 environment.

  1. Performance of HER of different goal sample methods (future, random, episode, last).
  1. Performance of Nstep HER and Nstep DDPG.
  1. Performance of SHER (Not good enough in FetchReach environment, I will test more envs to report).

Update

  • 9.27 V0.0: update readme;
  • 10.3 V0.5: revised code framework hugely, supported DDPG and HER(future, last, final, random);
  • 10.4 V0.6: update code framework, add rollouts and samplers packages;
  • 10.6 add nstep sampler and nstep her sampler;
  • 10.7 fix bug of nstep her sampler;
  • 10.16 add priority experience replay and cut her;
  • 10.31 V1.0: add SHER support;

About

Modular-HER is revised from OpenAI baselines and supports many improvements for Hindsight Experience Replay as modules.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages