Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

您好,为什么您发布的LOL_v2_real的预训练模型的测试结果比论文中的高,这是正常的吗? #11

Open
LongYu-LY opened this issue Jul 5, 2024 · 3 comments

Comments

@LongYu-LY
Copy link

论文LOL_v2_real中的psnr和ssim分别为22.00和0.849,预训练模型的测试结果为22.45和0.844

1720149791815

@YhuoyuH
Copy link
Owner

YhuoyuH commented Jul 5, 2024 via email

@LongYu-LY
Copy link
Author

确实是看的第一版,感谢您的回答

@674123
Copy link

674123 commented Sep 5, 2024

您好,我在测试的时候遇见了以下这个问题,还想请问一下,希望得到您的答复:
export CUDA_VISIBLE_DEVICES=0
dataset LOL_v1
Not using Automatic Mixed Precision
===>Testing using weights: pretrained_weights/LOL.pth/net_g_1000.pth
data/LOLv1/Test/input
data/LOLv1/Test/target
0it [00:00, ?it/s]
/root/miniconda3/lib/python3.8/site-packages/numpy/core/fromnumeric.py:3474: RuntimeWarning: Mean of empty slice.
return _methods._mean(a, axis=axis, dtype=dtype,
/root/miniconda3/lib/python3.8/site-packages/numpy/core/_methods.py:189: RuntimeWarning: invalid value encountered in double_scalars
ret = ret.dtype.type(ret / rcount)
PSNR: nan
SSIM: nan

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants