Make video classification on UCF101 using CNN and RNN with Pytorch framework.
# 1. torch >= 1.0
conda create -n crnn
source activate crnn # or `conda activate crnn`
# GPU version
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
# CPU version
conda install pytorch-cpu torchvision-cpu -c pytorch
# 2. pip dependencies
pip install pandas scikit-learn tqdm opencv-python
# 3. prepare datasets
cd ./Pytorch-Video-Classification # go to the root dir of the code
cp -r path/to/your/UCF ./data # copy UCF dataset to data dir
cd ./data && python make_train_test.py # preprocess the dataset
# 4. train your network on UCF-101
python train.py
# (optional)5. restore from checkpoints
python train.py -r path/to/checkpoints/file
To know more about the usage of scripts, run the following commands:
python train.py -h
python make_train_test.py -h