SparkSteps allows you to configure your EMR cluster and upload your spark script and its dependencies via AWS S3. All you need to do is define an S3 bucket.
pip install sparksteps
Prompt parameters: app main spark script for submit spark (required) app-args: arguments passed to main spark script aws-region: AWS region name bid-price: specify bid price for task nodes bootstrap-action: include a bootstrap script (s3 path) cluster-id: job flow id of existing cluster to submit to debug: allow debugging of cluster defaults: spark-defaults configuration of the form key1=val1 key=val2 dynamic-pricing-master: use spot pricing for the master nodes. dynamic-pricing-core: use spot pricing for the core nodes. dynamic-pricing-task: use spot pricing for the task nodes. ebs-volume-size-core: size of the EBS volume to attach to core nodes in GiB. ebs-volume-type-core: type of the EBS volume to attach to core nodes (supported: [standard, gp2, io1]). ebs-volumes-per-core: the number of EBS volumes to attach per core node. ebs-optimized-core: whether to use EBS optimized volumes for core nodes. ebs-volume-size-task: size of the EBS volume to attach to task nodes in GiB. ebs-volume-type-task: type of the EBS volume to attach to task nodes. ebs-volumes-per-task: the number of EBS volumes to attach per task node. ebs-optimized-task: whether to use EBS optimized volumes for task nodes. ec2-key: name of the Amazon EC2 key pair ec2-subnet-id: Amazon VPC subnet id help (-h): argparse help keep-alive: whether to keep the EMR cluster alive when there are no steps log-level (-l): logging level (default=INFO) instance-type-master: instance type of of master host (default='m4.large') instance-type-core: instance type of the core nodes, must be set when num-core > 0 instance-type-task: instance type of the task nodes, must be set when num-task > 0 maximize-resource-allocation: sets the maximizeResourceAllocation property for the cluster to true when supplied. name: specify cluster name num-core: number of core nodes num-task: number of task nodes release-label: EMR release label s3-bucket: name of s3 bucket to upload spark file (required) s3-dist-cp: s3-dist-cp step after spark job is done submit-args: arguments passed to spark-submit tags: EMR cluster tags of the form "key1=value1 key2=value2" uploads: files to upload to /home/hadoop/ in master instance
AWS_S3_BUCKET = <insert-s3-bucket> cd sparksteps/ sparksteps examples/episodes.py \ --s3-bucket $AWS_S3_BUCKET \ --aws-region us-east-1 \ --release-label emr-4.7.0 \ --uploads examples/lib examples/episodes.avro \ --submit-args="--deploy-mode client --jars /home/hadoop/lib/spark-avro_2.10-2.0.2-custom.jar" \ --app-args="--input /home/hadoop/episodes.avro" \ --tags Application="Spark Steps" \ --debug
The above example creates an EMR cluster of 1 node with default instance type m4.large, uploads the pyspark script episodes.py and its dependencies to the specified S3 bucket and copies the file from S3 to the cluster. Each operation is defined as an EMR "step" that you can monitor in EMR. The final step is to run the spark application with submit args that includes a custom spark-avro package and app args "--input".
You can use the option --cluster-id
to specify a cluster to upload
and run the Spark job. This is especially helpful for debugging.
Use CLI option --dynamic-pricing-<instance-type>
to allow sparksteps to dynamically
determine the best bid price for EMR instances within a certain instance group.
Currently the algorithm looks back at spot history over the last 12
hours and calculates min(50% * on_demand_price, max_spot_price)
to
determine bid price. That said, if the current spot price is over 80% of
the on-demand cost, then on-demand instances are used to be
conservative.
make test
Read more about sparksteps in our blog post here: https://www.jwplayer.com/blog/sparksteps/
Apache License 2.0