This is a collection of heavily commented examples of how to write shaders in SparkSL. SparkSL is a shader language used in SparkAR that is cross compatible across iOS and android devices. It shares many similarities to GLSL but has a few quirks and nice additions of its own.
This repo closely mirrors my other project of p5js shader examples.
Currently a work in progress, feel free to get in touch if you've got any questions or file a PR if you'd like to contribute.
For a complete list of new features in SparkSL consult the documentation.
I've outlined a few of the things I've noticed for easy reference.
//GLSL
// In glsl the vertex and fragment shaders are in separate files
// Vertex shader
uniform mat4 u_MVPMatrix;
attribute vec4 a_Position;
attribute vec2 a_TexCoord;
varying vec2 v_TexCoord;
void main(){
v_TexCoord = a_TexCoord;
gl_Position = u_MVPMatrix * a_Position;
}
// Fragment shader
varying vec2 v_TexCoord;
void main(){
gl_FragColor = vec4(v_TexCoord, 0.0, 1.0);
}
// SparkSL
// In SparkSL, the vert and frag shaders are part of the same function
// We need to specify a position and color output for the shader
void main(out vec4 Position, out vec4 Color){
// SparkSL has built in functions for accessing the transform matrices and vertex attributes
Position = std::getModelViewProjectionMatrix() * std::getVertexPosition();
// By default vertex attributes or calculations will happen in the vertex shader
// You can force a calculation to the fragment shader by surrounding the function with fragment()
vec2 uv = fragment(std::getVertexTexCoord());
Color = vec4(uv, 0.0, 1.0);
}
// There's no such thing as namespaces in glsl
// In sparkSL you can use namespaces similar to how they work in c++
// Adding the following line means that I no longer need to write std:: before using builtin functions
using namespace std;
// You can also create your own namespaces
namespace adam {
vec4 ferriss(vec2 uv){
return vec4(fract(uv), 0.0, 1.0);
}
};
vec4 main(){
vec2 uv = fragment(getVertexTexCoord());
return adam::ferriss(vec2(uv * 10.0));
}
// GLSL
// In glsl you can swizzle using rgba, xyzw, or stpq
vec4 colorA = vec4(0.1, 0.5, 0.2, 1.0);
vec4 colorB = colorA.brag; // vec4(0.2, 0.1, 1.0, 0.5);
// SparkSL
// In SparkSL you can swizzle using rgba, xyzw, stpq, as well as 0 and 1
// Swizzles work just like patch editor swizzle strings
vec4 colorA = vec4(0.1, 0.5, 0.2, 1.0);
vec4 colorB = coloA.br01; // vec4(0.2, 0.1, 0.0, 1.0);
// This feature doesn't exist in GLSL
// In SparkSL you can use optionals so that if you don't have a texture ( or other value) attached there will be a fallback.
// https://sparkar.facebook.com/ar-studio/learn/sparksl/sparksl-overview#optional-types
vec4 main(optional <std::Texture2d> tex0){
vec2 uv = fragment(std::getVertexTexCoord());
// Here we sample our optional texture
// The valueOr function is chained on to the end so that we return red if no texture is attached
vec4 color = tex0.sample(uv).valueOr(vec4(1.0, 0.0, 0.0, 1.0));
return color;
}
// GLSL
// In glsl you must use decimal points for all floating point numbers.
vec3 x = vec3(1, 2, 3); // ERROR!
vec3 y = vec3(1.0, 2.0, 3.0); // Correct
// SparkSL
// In SparkSL, unless you're mixing ints and floats, vec values will get auto converted to decimals
// As a rule, you can leave off the decimal values when using constructors, outside of that, you'll need decimals
// The trailing 0 is not necessary though
vec3 a = vec3(1, 2, 3); // Correct
vec3 b = vec3(0, 1.2, 3); // Correct
vec3 d = vec3(0, 1, 2) * 0.2; // Correct
float e = 2. // Correct
vec3 f = vec3(2) * 2; // ERROR!
vec3 g = vec3(2 * 1.2); // ERROR!
vec3 h = vec3(2);
h *= 2; // ERROR!
// GLSL
float[] x = float[] (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6);
// SparkSL
// You can do this in two ways
float arrayA[5] = {1.0, -2.0, 0.2, 5.0, 3.3};
vec3 anotherArray[3] = {vec3(1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, 0.0, 1.0)};
// or...
float arrayB[3];
arrayB[0] = 0.1;
arrayB[1] = 1.9;
arrayB[2] = -1.0;
vec3 arrayC[3];
arrayC[0] = vec3(1.0, 0.0, 0.0);
arrayC[1] = vec3(0.0, 1.0, 0.0);
arrayC[2] = vec3(0.0, 0.0, 1.0);
// GLSL
// In glsl you add uniforms to the top of your script with the uniform keyword
uniform float time;
// SparkSL
// In SparkSL you create uniforms by adding them as parameters to the main function
// !!!!!!!! DANGER DANGER !!!!!!!!!
// SparkSL doesn't currently support boolean, integer, or string type uniforms. Passing them in will break spark and may crash your filter
// Time and colorA will appear as uniforms in the patch and material editors
vec4 main(float time, vec4 colorA){
return fract(colorA + time);
}
// To set a uniform from a script you can use the material.setParameter() function
// setParameter() can take a float or R.pack2, R.pack3, or R.pack4
const M = require("Materials");
const Time = require("Time");
M.findFirst("material0).then( m => {
m.setParameter("time", Time.ms.div(1000))
m.setParameter("colorA", R.pack4(1.0, 0.0, 0.5, 1.0));
});
// GLSL
uniform sampler2D myTex;
varying vec2 uv;
// In glsl we pass the texture in as a sampler2D use the texture2D function to access it.
void main(){
vec4 color = texture2D(myTex, uv);
gl_FragColor = color;
}
// SparkSL
// In SparkSL, each texture has .sample() as part of it's member functions.
// We also need to pass in the function as a uniform via the parameters in the main function declaration
vec4 main(std::Texture2d myTex){
vec2 uv = fragment(std::getVertexTexCoord());
vec4 color = myTex.sample(uv) ;
return color;
}
// GLSL
uniform samplerCube myTex;
varying vec3 dir;
void main(){
gl_FragColor = textureCube(myTex, dir);
}
// SparkSL
// In SparkSL we use the TextureEnv type to supply a texture to the shader.
// I'm just using vertex Normals here for illustrative purposes
void main(std::TextureEnv myTex){
vec3 dir = fragment(std::getVertexNormal());
return myTex.sample(dir);
}
// GLSL does not have the auto keyword
// SparkSL includes the auto keyword (similar to c++) for automatically determining variable type
auto color = vec4(1.0, 0.0, 0.2, 1.0);
// GLSL doesn't have any builtin way to access texture or render target resolution.
// Typically they are passed in as uniforms
uniform vec2 resolution;
uniform vec2 textureSize;
// SparkSL has a couple different resolution functions
// You can access the render target size by using std::getRenderTargetSize()
// You can access a texture's size by using texture.size
vec4 main(std::Texture2d tex){
vec2 renderTargetSize = std::getRenderTargetSize();
vec2 textureSize = tex.size;
// ...
}
//GLSL
// In glsl you can access fragment coordinates by using gl_FragCoord
uniform vec2 resolution;
void main(){
vec2 uv = gl_FragCoord / resolution;
gl_FragColor = vec4(uv, 0.0, 1.0);
}
// In SparkSL you can use getFragmentCoord()
using namespace std;
void main(out vec4 Color){
// Already normalized
vec2 fragCoord = fragment(getFragmentCoord().xy);
Color = vec4(fragCoord, 0.0, 1.0);
}
// Or you can get fragCoords manually
// In a fullscreen shader you can use:
vec2 fragCoord = fragment(floor(std::getRenderTargetSize() * std::getVertexTexCoord()));
// In a non-fullscreen shader you can do:
using namespace std;
void main(out vec4 Position, out vec4 Color){
Position = getModelViewProjectionMatrix() * getVertexPosition();
// Do the perspective divide.
// Important! Note that the Position.w needs to be outside of the fragment call so that this operation happens in the fragment shader!!
vec2 fragCoord = fragment(Position.xy ) / Position.w;
fragCoord = fragCoord * 0.5 + 0.5;
// fragCoord is a value from 0 -1, if you want it in pixels you can do
// fragCoord = floor(fragCoord * getRenderTargetSize());
// if you're using pixel coordinates, you may need to add 0.5 to get the center of the pixel
// fragCoord += 0.5;
Color = vec4(fragCoord, 0.0, 1.0);
}
using namespace std;
vec4 main(){
// SparkSL will try to move all calculation that it can into the vertex shader for increased performance.
// Sometimes this isn't desirable so you can force a calculation in the fragment shader with the fragment() function.
// All subsequent calculation after calling a fragment() function on a variable will have in the fragment shader.
// Output one of the following and note the slight difference in appearance
vec2 vertexUvs = getVertexTexCoord();
vec2 fragmentUvs = fragment(getVertexTexCoord());
return vec4(vertexUvs, 0.0, 1.0);
}
// Matrices are constructed in SparkSL the same way that they are in glsl
// The only matrix types that exist are mat4 (4x4), mat3 (3x3), and mat2 (2x2).
// Refer to [here for more info](https://www.khronos.org/opengl/wiki/Data_Type_(GLSL)#Matrix_constructors)
// They are filled in column major order
// You can construct identity matrices like so
mat4 identity = mat4(1.0);
// As a reminder an identity matrix is
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1
// Some more examples of matrix initialization
mat4 m4 = mat4(vec4(1.0), // first column
vec4(1.0), // second column
vec4(1.0), // third column
vec4(1.0)); // fourth column
// or
mat4 m4 = mat4(1.0, 1.0, 1.0, 1.0, // first column
1.0, 1.0, 1.0, 1.0, // second column
1.0, 1.0, 1.0, 1.0, // third column
1.0, 1.0, 1.0, 1.0); // fourth column
mat3 m3 = mat3(vec3(1.0), vec3(1.0), vec3(1.0));
// or
mat3 m3 = mat3(1.0, 1.0, 1.0,
1.0, 1.0, 1.0,
1.0, 1.0, 1.0);
mat2 m2 = mat2(vec2(1.0), vec2(1.0));
// or
mat2 m2 = mat2(1.0, 1.0,
1.0, 1.0);
Each project contains a spark file with a few different example shaders contained within. Just open up the patch editor and connect the output of the shader assets to the Device Output patch to try different effects.
This project shows how to create a shader code asset and render a few different colors.
- Red
- Gray
- Cyan
- Functions
This project shows how to use the optional
keyword and valueOr()
fallback function.
This project shows how to add touch input to a shader.
This project shows how to access texture coordinates and use them in a variety of different ways
- Basic Uvs
- Tiles
- Gradient
- Random
- Noise
- Checkers
- Vignette
This project shows how to compute screen space uv's / fragCoords
This project shows how to use a mesh with multiple uv sets.
This project shows how to send values to a shader from the patch / material editors, as well as from a script.
- Uniforms Basics
- Touch Position
- From Script
- Textures
- Adjust HSV
- Box Blur
- Displacement Map
- Gaussian Blur
- Mirror
- Pixel Stretch
- Sine Distort
- Invert
- Mosaic
- RGB Separation
- Convolution
- Delay
- Feeback
- Slitscan
- Matcap
- Glass
- Vertex Displacement
- Fresnel (Facing ratio)
- Outline
- Billboard
- Liquify
- Optical Flow
This section shows how to use the built in libraries and functions
- Basic Shapes
- Rotation
- Complex Shapes
- Annular Shapes
- Phong lighting
- Sample LOD function
Many of the functions in shadertoy have SparkSL equivalents. Here's a table with some of them listed out. Some things like delta time, date, and mouse position are not listed here. However they could be computed and passed as uniforms to your shader.
Shadertoy | SparkSL |
---|---|
iTime | std::getTime() |
iResolution.xy | std::getRenderTargetSize() |
iChannelResolution[0].xy | texture.size |
fragCoord | see above |
texture() | myTex.sample(uv) |